
CLEDB solar-coronal-inversion
Release update-readthedocs

Alin Paraschiv

Feb 28, 2023

CONTENTS:

1 Synopsis and Motivation 3
1.1 Synopsis . 3
1.2 Motivation for the CLEDB approach . 3
1.3 List of Relevant Publications . 4

2 Module Overview 5
2.1 Algorithm Flowchart Definitions . 5
2.2 The CLEDB Modules . 5
2.3 The Python Modules . 6

3 Installation and Run Instructions 9
3.1 Code Distribution Download . 9
3.2 A CLEDBenv Python Environment . 9
3.3 Basic Run Example . 10
3.4 Headless Slurm Runs Overview . 11
3.5 Example Test Data . 11

4 Input Variables and Parameters 15
4.1 Input Data and Metadata . 15
4.2 Ctrl. Parameters ctrlparams.py Class . 16

4.2.1 General Parameters . 17
4.2.2 PREPINV Parameters . 17
4.2.3 PROC Parameters . 18
4.2.4 Numba Jit Parameters . 19

4.3 Constants constants.py Class . 20
4.3.1 Physical Constants . 22
4.3.2 Ion Specific Constants . 22

5 CLEDB_BUILD - Database Generation 25
5.1 CLEDB_BUILD Configuration . 25

5.1.1 DB.INPUT Parameters . 26
5.2 The CLEDB_BUILD Job Script . 28
5.3 CLEDB_BUILD Output . 29

6 CLEDB_PREPINV - Pre-processing 31
6.1 CLEDB_PREPINV Module Functions . 31
6.2 CLEDB_PREPINV Main Variables . 33

7 CLEDB_PROC - Analysis and Inversion 35
7.1 The SPECTRO_PROC Function . 36

7.1.1 SPECTRO_PROC Main Functions . 36

i

7.1.2 SPECTRO_PROC Main Variables . 37
7.2 The BLOS_PROC Function . 38

7.2.1 BLOS_PROC Main Functions . 39
7.2.2 BLOS_PROC Main Variables . 39

7.3 The CLEDB_INVPROC Function . 39
7.3.1 CLEDB_INVPROC Main Functions . 39
7.3.2 CLEDB_INVPROC Main Variables . 41

8 Output Products 43
8.1 Output Variable Overview . 43
8.2 Tentative Issuemask Implementation . 43

9 Thorough Readme Files 45
9.1 MAIN README . 45

9.1.1 CLEDB Coronal Magnetic Field Database Inversion . 45
9.2 README-RUNDB . 47

9.2.1 CLEDB Parallel Database Generator . 47
9.3 README-SLURM . 50

9.3.1 CLEDB Research Computing Runs . 50

10 List of changes and TODO tasks 53
10.1 CLEDB UPDATES and TODO list . 53

11 Glossary 57

Index 61

ii

CLEDB solar-coronal-inversion, Release update-readthedocs

Purpose:
The Coronal Line Emission DataBase inversion is a public Python based tool and pipeline that is used to infer mag-
netic field information from SpectroPolariemtric observations of the Solar Corona. This document describes the main
concepts, functions, and variables, comprising the CLEDB inversion algorithm for inverted coronal magnetic fields.

Authors and Contact:

Alin Paraschiv and Philip Judge
– High Altitude Observatory NCAR|UCAR
– National Solar Observatory, AURA

arparaschiv at ucar edu or paraschiv.alinrazvan+cledb at gmail

Caution: Vector coronal magnetometry is not yet advanced enough as to recover HMI-like magnetograms. A user
should not expect such a product yet. Solution degeneracies exist, and the user is required to make a decision on
how to interpret the inversion outputs and which products to utilize for their science.

Danger: This setup should be considered at best a beta-level release. This setup tackles a problem for which
currently no complete observation data exists and where a complex forward-model + inversion is required. Bugs
or unintentional bad outcomes will still exist at this point in time. Please get in touch with us about any “feature”
you discover.

Note: Last updated at the *update-readthedocs* commit tag.

CONTENTS: 1

https://github.com/arparaschiv/solar-coronal-inversion

CLEDB solar-coronal-inversion, Release update-readthedocs

2 CONTENTS:

CHAPTER

ONE

SYNOPSIS AND MOTIVATION

1.1 Synopsis

CLEDB aims to invert coronal magnetic field information from observations of polarized light. The algorithm takes
arrays of one or two sets of SpectroPolarimetric Stokes IQUV observations sobs_in along with their header metadata
information. The data and metadata are pre-processed, and optimal corresponding sets of databases resulting from
forward calculations are selected and read from disk storage.

The data processing is split into two branches, based on the available polarized coronal Stokes observations:

• 1-line branch: 4 input IQUV observations (one coronal emission line).

• 2-line branch: 8 input I1Q1U1V1I2Q2U2V2 observations (two coronal emission lines).

or
• 2-line branch: 6 input I1Q1U1I2Q2U2 observations (two coronal emission lines without Stokes V).

Spectroscopic analysis products are computed for each line for both 1-line or 2-line branches that include a spectral
dimension.

The 1-line branch employs analytical approximations to calculate line of sight (LOS) integrated magnetic field products,
while the 2-line branch offers access to additional magnetic field products. The 2-line setup benefits from more degrees
of freedom allowing us to break degeneracies intrinsic in the inversion. Thus, the 2-line algorithm branch performs a 𝜒2

fitting between the observation and a forward-modeled database to recover full 3D vector magnetic field components.
The 8 component IQUV fit will result in sets of two times degenerate solutions, while the 6 component IQUD fit will
recover two sets of sets (4 total) degenerate solutions. The IQUD setup needs access to additional information recovered
from Doppler oscillation analysis in order to constrain the solution.

The databases are generated via forward modeling of combinations of input magnetic field and geometric parameters.
In this setup, databases are used as a static input with respect to the inversion scheme and should not be computed
dynamically for each observation.

1.2 Motivation for the CLEDB approach

By utilizing 2-line observations, we can recover the 3D magnetic field information for single point voxel using a 𝜒2

fitting approach. Theoretically, we can employ the CLE (Coronal Line Emission) spectral synthesis code to generate
forward-model calculations. About 107-109 atomic plasma and magnetic configurations are needed in order to satisfy
a reasonable solution resolution criteria. Directly forward modeling such solutions for one pixel/voxel in a dynamic
fashion would be time consuming. Such a calculation has execution times in the order of 5-10 hours, on a single CPU
thread when using a fast implementation of the Fortran CLE code.

3

CLEDB solar-coronal-inversion, Release update-readthedocs

Building a static database (via the CLEDB_BUILD module of our algorithm) to store the vast set of synthetic Stokes ob-
servations, along with the input plasma and magnetic field configurations responsible for producing polarized emission,
proved to be a significantly more feasible approach.

Additionally, the database theoretical calculations gain intrinsic access to otherwise un-observable input parameters
(e.g. atomic alignment 𝜎2

0 , intrinsic magnetic field angles 𝜗, 𝜙 etc.) that can be used to break inherent degeneracies
encountered when attempting analytical inversions (as for example occurring in the 1-line branch implementation). The
dimensionality of the problem at hand can be further reduced by 1-2 orders of magnitude by using native symmetries
when building and querying databases. Detailed discussions on the physics aspects of dimensionality reduction and
degeneracy breaking effects can be found in the sources below.

1.3 List of Relevant Publications

Academic journal papers that helped fundament, build and justify CLEDB:

1. Paraschiv & Judge, SolPhys, 2022 covered the scientific justification of the algorithm, and the setup of the
CLEDB inversion.

2. Judge, Casini, & Paraschiv, ApJ, 2021 discussed the importance of scattering geometry when solving for coronal
magnetic fields.

3. Ali, Paraschiv, Reardon, & Judge, ApJ, 2022 performed a spectroscopic exploration of the infrared regions of
the emission lines available for inversion with CLEDB.

4. Dima & Schad, ApJ, 2020 discussed potential degeneracies in using certain line combinations. The one-line
CLEDB inversion directly utilizes the methods and results described in this work.

5. Schiffmann, Brage, Judge, Paraschiv & Wang, ApJ, 2021 performed large-scale Lande g factor calculations for
our ions of interest and discusses degeneracies in context of their results.

6. Casini & Judge, ApJ, 1999 and Judge & Casini, ASP proc., 2001 described the theoretical line formation process
implemented by CLE, the coronal forward synthesis Fortran code that is currently utilized by CLEDB.

4 Chapter 1. Synopsis and Motivation

https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...912...18J/abstract
https://ui.adsabs.harvard.edu/abs/2022ApJ...932...22A/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..186S/abstract
https://ui.adsabs.harvard.edu/abs/1999ApJ...522..524C/abstract
https://ui.adsabs.harvard.edu/abs/2001ASPC..236..503J/abstract

CHAPTER

TWO

MODULE OVERVIEW

2.1 Algorithm Flowchart Definitions

We illustrate our definitions for the flowcharts presented throughout this document that describe the principal algorithm
operations. We note that the flowcharts are not exhaustive and are not meant to describe the code to the level of
individual operations. The flowcharts list the main variables and functions used along with how they are processed by
the different modules and intrinsic functions, and the resulting outputs.

2.2 The CLEDB Modules

The CLEDB inversion algorithm can be split into three parts:

• The CLEDB_BUILD module contains pre-configured scripts for generating a database used downstream to fit
the observations. Fortran binaries and Bash scripting is used by this module. Running the default configured
rundb_1line.sh script for each line of your observation is enough in most cases. Please see the dedicated
README-RUNDB for more detailed instructions.

• The CLEDB_PREPINV module prepares the data for analysis and matches required databases to read into memory
(for the 2-line branch). Two main functions SOBS_PREPROCESS and SDB_PREPROCESS match and prepare
the data and databases for analysis. The ctrlparams and constants classes are imported separately and fed to the
module.

• The CLEDB_PROC module encompasses the main data analysis functions SPECTRO_PROC, BLOS_PROC,
and/or CLEDB_INVPROC. These apply analytical solutions or database inversion schemes on the input ob-
servational data to recover the desired plasma and magnetic field parameters (e.g. the OUTPUTS).

Hint: The MAIN README contains instructions on how to end-to-end run the provided examples.

5

CLEDB solar-coronal-inversion, Release update-readthedocs

The flowchart schematic presents the modules along with the main inputs and outputs. Each module is described sep-
arately in the following sections along with detailed operation flowcharts. The most important variables and functions
are described for each inversion module component. The definitions and accompanying diagrams are not meant to be
1:1 mirrors of the coding, but merely to trace the most crucial operations and resulting outputs. Common terminology
is defined in the last section.

Note: Additional extended comments on specific code blocks and function inner-workings can be found in each
module’s Python/Bash scripts.

2.3 The Python Modules

The following Python packages are required. For numerical computation efficiency, the inversion heavily relies on the
Numpy and Numba packages.

• Numpy
Numpy provides fast vectorized operations on its self implemented-ndarray datatypes. All Python based
modules are written in a Numpy-centric way. Functional equivalent pure Python coding is avoided when
possible due significantly slower runtimes. Numpy version specific (1.23) documentation is found here.

• Numba
Numba implements just in time (JIT) compilation decorators and attempts where possible to perform loop-

6 Chapter 2. Module Overview

https://numpy.org/doc/1.23/

CLEDB solar-coronal-inversion, Release update-readthedocs

lifting and scale serial tasks on available CPU threads. Numba has two modes of operation, object-mode and
non-python mode. Non-python mode is the desired target. It will maximize optimization and runtime speed,
but is significantly limited in terms of Python and/or Numpy function compatibility. Object-mode has full
Python compatibility but the applicable optimizations are significantly less effective in most situations.

A Numba fully-enabled implementation can utilize only a small subset of Python and Numpy functions.
Significant data sanitation and statically defined function I/O are required in order to enable runtime op-
timization and parallelization. Due to these sacrifices, coding implementations are not always clear and
straightforward.

Danger: Numba non-python mode is not directly equivalent to parallel/loop-lifted runs. A decision
on running a specific function in parallel needs manual consideration. Loop-lifting “all” non-python
functions leads to significant worsening of execution efficiency. We use a control parameter described
later-on to control the use of loop-lifting/parallelization, but only on functions that would benefit from
the effect. A significant number of non-python compatible functions have implicit parallelization set to
disabled for good reason.

Extensive documentation and examples can be found in the Numba documentation. The version specific
(0.56.4) documentation is available here.

Attention: The CLEDB_PREPINV module can only be compiled in Numba object-mode due to disk
I/O operations that are not implemented in non-python mode. Object-mode is usually not faster than
normal Python, but it does benefit from loop-lifting parallelization, that is beneficial to our usecase.

• pyyaml
YAML format library utilized in the ctrlparams class to enable or disable Numba global options.

• Scipy
Used for spectroscopic fitting and statistics.

• Jupyter, Jupyterlab, Matplotlib and Ipympl
Optional libraries for data visualization, plotting, widgets, etc.

• Glob, and OS
Additional modules used primarily by CLEDB_PREPINV for disk I/O operations.

• Time and Sys
Used during debug runs with high level of verbosity.

• Sphinx, Sphinx-rtd-theme and Myst-parser
Libraries for building documentation and processing markdown files. Disabled by default as these are not
required for running the inversion.

2.3. The Python Modules 7

https://numba.readthedocs.io/en/stable/user/performance-tips.html#no-python-mode-vs-object-mode
https://numba.readthedocs.io/en/0.53.1/

CLEDB solar-coronal-inversion, Release update-readthedocs

8 Chapter 2. Module Overview

CHAPTER

THREE

INSTALLATION AND RUN INSTRUCTIONS

3.1 Code Distribution Download

The CLEDB coronal field inversion code distribution is publicly hosted on Github:

https://github.com/arparaschiv/solar-coronal-inversion

To create a local deployment use the git clone function:

git clone https://github.com/arparaschiv/solar-coronal-inversion

CLEDB_BUILD uses CLE precompiled GNU compatible Fortran binary executable files to generate databases. The
module is run by utilizing a Bash script that enables parallel runs of serial computations. Binaries for both Darwin and
Linux architectures are provided. More details are found in the CLEDB_BUILD - Database Generation module.

Note: The CLE FORTRAN source code is not included in this package. It is hosted in a separate repository https:
//github.com/arparaschiv/coronal-line-emission.

3.2 A CLEDBenv Python Environment

The CLEDB_PREPINV and CLEDB_PROC modules of CLEDB are written in Python. The Anaconda environment system
is utilized. Anaconda documentation and installation instructions can be found here.

We provide a configuration file CLEDBenv.yml to create a custom Anaconda environment that groups the CLEDB
utilized Python modules briefly described above.

name: CLEDBenv
channels:
- defaults
- numba
- conda-forge
dependencies:
- python=3.10
- numpy=1.23
- numba=0.56
- pyyaml ## used only in ctrlparams for NUMBA global options
- scipy=1.9
- ipython=8.6
- ipympl

(continues on next page)

9

https://github.com/arparaschiv/solar-coronal-inversion
https://github.com/arparaschiv/coronal-line-emission
https://github.com/arparaschiv/coronal-line-emission
https://docs.continuum.io/anaconda/install/

CLEDB solar-coronal-inversion, Release update-readthedocs

(continued from previous page)

- jupyter
- jupyterlab
- matplotlib
- sphinx=5.0.2 ## Not required by CLEDB; used only to build the documentation
→˓## fixed version also stated in docs/requirements.txt
- myst-parser=0.18.1 ## Not required by CLEDB; used to add markdown parsing to␣
→˓documentation building.
- sphinx-rtd-theme=1.1.1 ## Not required by CLEDB; theme for the documentation

The configuration file is used to configure the required and optional CLEDB Python packages. In a terminal session
you can create the environment via:

conda env create -f CLEDBenv.yml

After installing all packages the environment can be activated via

conda activate CLEDBenv

The user can return to the standard Python package base by running

conda deactivate

If dependency problems arise for any reason, CLEDBenv can be deleted and recreated with the default fixed-version
packages from CLEDBenv.yml.

conda remove --name CLEDBenv --all

Danger: The CLEDBenv anaconda environment installs specific version packages. Cross-compatibility is verified
by us. This feature ensures additional codebase stability. Updating the individual Python packages inside the
CLEDBenv environment is not recommended and might break code functionality.

3.3 Basic Run Example

1. Databases can be built with:

./CLEDB_BUILD/rundb_1line.sh

See detailed database build instructions via the dedicated README-RUNDB found in the
CLEDB_BUILD directory.

2. Two examples of running the full inversion package (assuming databases are already built) are provided as Jupyter
notebooks and/or lab sessions.

./jupyter-lab test_1line.ipynb

./jupyter-lab test_2line.ipynb

Attention: Script versions for test_1line and test_2line are also available. These are tailored to be used in
headless runs.

10 Chapter 3. Installation and Run Instructions

CLEDB solar-coronal-inversion, Release update-readthedocs

3.4 Headless Slurm Runs Overview

A few optimizations and modifications are provided in order to ensure a straightforward run of CLEDB on headless
systems like research computing clusters. The Slurm environment is utilized.

Namely:

• Instructions for resource allocation, installing, and running the inversion in both interactive and batch modes of
Slurm research computing setups are provided.

• The database building bash script has a dedicated headless version, rundb_1line_slurm.sh, where user options
are hard-coded.

• Pure python test scripts (test_*.py) are exported/generated from the Jupyter notebooks (test_*.ipynb) to be com-
patible with batch allocations.

A dedicated readme covering this topic can be consulted here or as standalone in the main CLEDB directory. The
instructions are provided following the templates set by the Colorado University Research Computing User Guide.

3.5 Example Test Data

A number of examples are included to help a user get started with inverting magnetic fields. The test jupyter or python
scripts will load different datafiles corresponding to one selected test case. Some cases are not yet fully implemented or
available. The available datafiles can be donwloaded from the links below, or by following the Readme.md instructions.
The Readme.md file also contains a method for downloading the data using only the terminal for headless systems.

Hint: A DKIST Cryo-NIRSP example will be included once such data becomes available to the community.

• IQUV test example 1.a
Full Stokes IQUV data. A CLE <https://github.com/arparaschiv/coronal-line-emission> computed
forward-synthesis of Fe XIII 1074 and 1079 nm lines using a dipole generator program (See CLE dipolv.f).
Three independent magnetic dipoles are generated at different positions along the LOS. These outputs are
combined into a single LOS projected observation.

The 1.a data can be downloaded from gdrive.

• IQUV test example 1.b
Full Stokes IQUV data. A CLE computed forward-synthesis of Fe XIII 1074 and 1079 nm lines using

3.4. Headless Slurm Runs Overview 11

https://slurm.schedmd.com/documentation.html
https://curc.readthedocs.io/en/latest/index.html
https://drive.google.com/file/d/1beyDfZbm6epMne92bqlKXcgPjYI2oGRR/view?usp=sharing
https://github.com/arparaschiv/coronal-line-emission

CLEDB solar-coronal-inversion, Release update-readthedocs

a current sheet generator program (See CLE sheet.f). Five simple independent magnetic structures are
generated along the LOS to test the algorithm’s matching for LOS positions.

Attention: Two structures are confounded with respect to the LOS leading the inversion to give ero-
neous results for these locations. This is expected. See Paraschiv & Judge, SolPhys, 2022.

This testcase will be included soon in the example list.

• IQUV test example 1.c
Full Stokes IQUV data. A MURAM simulation of a dipolar structure at the POS. Fe XIII forward-synthesis
via PyCELp. This is a large datafile that is used only for internal testing and can’t be shared with the
community.

Note: For all above examples, a user should expect solutions that are degenerate in pairs of two with respect to the LOS
position. These need to be properly disambiguated for each observation. A human analysis and decision is required.

• IQUD test example 1.d
Stokes IQU data. No Stokes V. This is an example that unpickles a real observation from CoMP logged on
March 27 2012. CoMP is not capable of routinely measuring Stokes V. Multiple real-life coronal structures
are observed. Because Stokes V is not measured, we do not get access to a analytical solution via the
BLOS_PROC module.

12 Chapter 3. Installation and Run Instructions

https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract
https://github.com/tschad/pycelp

CLEDB solar-coronal-inversion, Release update-readthedocs

The 1.d data can be downloaded from gdrive.

• Test data 1.e - Doppler oscillation analysis results for data in 1.d
This is the additional data that needs to be brought in for obtaining a vector magnetic solution for the CoMP
observation offered as part of the 1.d example. The two utilized dimensions are sobs_dopp[:,:,0] and
sobs_dopp[:,:,1] representing respectively the magnetic field strength and the wave angle derived from
the Doppler oscillation analysis. The two other dimensions represent POS projections of the magnetic field,
but are not currently utilized. The test_2line scripts will just create an empty array when a full Stokes IQUV
inversion is requested as in the 1.a - 1.c examples.

The 1.e data can be downloaded from gdrive.

Note: For the two datafiles corresponding to the IQUD example, a user should expect solutions that are degenerate
in pairs of four with respect to the LOS position and the magnetic polarity. Currently a more degenerate solution is
retrieved when compared with the full Stokes IQUV inversions. Solutions to further disambiguate IQUD results are
currently being trialed. Noteworthy is the fact that the two degeneracies (LOS position and magnetic polarity) are
independent with respect to how the problem is posed. Thus, a selection of solutions should not be made as x in set
[0,1,2,3] but as x in [1,4] or [2,3] solution subsets for an observed pixel. As mentioned above, these solutions need to
be properly disambiguated for each observation. A human analysis and decision is required.

Hint: A mapping of the magnetic field strength can be obtained from any of the IQUV test 1.a - 1.c cases. These
alongside a calculation of the linear polarization azimuth can be fed as a sobs_dopp observation in a IQUD inversion
scheme applied to the same test data. (CLEDB will ignore the Stokes V information in this case). A set of four
degenerate solutions will be obtained. One subset of two solutions will be geometrically identical to the full IQUV
inversion output.

3.5. Example Test Data 13

https://drive.google.com/file/d/1AdAqIvsiXEV6RK5UiGWcu-1bovs0oOGr/view?usp=sharing
https://drive.google.com/file/d/1-hPiRRYRS6de_0zWz1k2UU1rIKOEbPOu/view?usp=sharing

CLEDB solar-coronal-inversion, Release update-readthedocs

14 Chapter 3. Installation and Run Instructions

CHAPTER

FOUR

INPUT VARIABLES AND PARAMETERS

4.1 Input Data and Metadata

header *keys
Set of input header metadata information that should describe the sobs_in variable. Expected keywords with
simplified naming are detailed in this section. Detailed keyword information can be found for DKIST observa-
tions in the SPEC_0214 documentation.

*keys to crpixn [] int Reference pixel along x y or w (wavelength) direction.

*keys to crvaln [] float Coordinate value at crpix along x y or w (wavelength) direction.

*keys to cdeltn [] float Spatial (x,y) or spectral (w) platescale sampling along a direction.

*keys to linpolref [] float (0, 2𝜋) range; Direction of database reference for the linear polarization.
linpolref = 0 implies the direction is corresponding to a horizontal axis, analogous to the unit circle reference.
Direction is trigonometric. The units are in radians. This is controlled via ctrlparams.

*keys to instwidth [] float Measure of the utilized instrument’s intrinsic line broadening coefficient.
The units are in nm. This is controlled via ctrlparams.

*keys to nline [] int Number of targeted lines; CLEDB can accept 1-line or 2-line observations.

*keys to tline [:12, nline] string array String array containing the name of lines to process. Nam-
ing convention follows the database directory structure defined as part of the CLEDB_BUILD module.

*keys to xs/naxis1 [] int Pixel dimension of sobs_in array along the horizontal spatial direction.

*keys to ys/naxis2 [] int Pixel dimension of sobs_in array along the vertical spatial direction.

*keys to ws [] int Pixel dimension of sobs_in array along the spectral dimension.

*keys to skybright [] float Sky brightness measurement used to judge observation quality and rms.

*keys to grtngba \& grtngang [] float The grating order and position; used to find central wavelength
of input observation and judge suitability for inverting.

keyvals [16] list of variables
Packing of nx, ny, nw, nline, tline, crpix1, crpix2, crpix3, crval1, crval2, crval3, cdelt1, cdelt2, cdelt3, linpolref,
instwidth in a list container to more easily feed the necessary keywords to other modules and/or functions.

sobs_in [nline][xs,ys,ws,4] float array; nline = 1 || 2 for (1-line) or (2-line)
sobs_in is passed as a numba typed list at input. Data are input Stokes IQUV observations of one or two lines
respectively. The list will be internally reshaped as a numpy float array of [xs,ys,ws,4] or [xs,ys,ws,8] size.

15

https://docs.dkist.nso.edu/projects/data-products/en/stable/specs/spec-214.html
https://numba.readthedocs.io/en/stable/reference/pysupported.html#typed-list

CLEDB solar-coronal-inversion, Release update-readthedocs

4.2 Ctrl. Parameters ctrlparams.py Class

"""
@author: Alin Paraschiv paraschiv.alinrazvan+cledb@gmail.com
"""

To load the class:
#par=ctrlparams()
#print(vars(par))
#print(a.__dict__)

class ctrlparams:
def __init__(self):

general params
self.dbdir = '/home/noxpara/Documents/physics_prog/cle/db204_R0500_UPDT/'␣

→˓ ## directory for database
self.verbose = 1 ␣

→˓ ## verbosity parameter

Used in CLEDB_PREPINV
self.integrated = True ␣

→˓ ## Boolean; parameter for switching to line-integrated data such as␣
→˓CoMP/uCoMP/COSMO

self.dblinpolref = 0 ␣
→˓ ## Parameter for changing the database calculation linear reference.␣
→˓Should not need changing in normal situations. radian units.

self.instwidth = 0 ␣
→˓ ## Parameter for fine-correcting non-thermal widths if instrument␣
→˓widths are known or computed by user. nm units.

Used in CLEDB_PROC
self.nsearch = 4 ␣

→˓ ## number of closest solutions to compute
self.maxchisq = 1000 ␣

→˓ ## Stop computing solutions above this chi^2 threshold
self.gaussfit = 2 ␣

→˓ ## Gaussian parametric fitting to use instead of the standard CDF␣
→˓fitting

self.bcalc = 3 ␣
→˓ ## control parameter for computing the B magnitude for two line␣
→˓observations.

self.reduced = True ␣
→˓ ## Boolean; parameter for reduced database search using linear␣
→˓polarization azimuth

self.iqud = True ␣
→˓ ## Boolean; parameter for IQU + Doppled data matching when Stokes V␣
→˓is not measurable

##numba jit flags
self.jitparallel = True ␣

→˓ ## Boolean; Enable or disable numba jit parralel interpreter
self.jitcache = False ␣

→˓ ## Boolean; Jit caching for slightly faster repeated execution.␣
→˓Enable only after no changes to @jit functions are required. Otrherwise kernel␣
→˓restarts are needed to clear caches.

(continues on next page)

16 Chapter 4. Input Variables and Parameters

CLEDB solar-coronal-inversion, Release update-readthedocs

(continued from previous page)

self.jitdisable = False ␣
→˓ ## Boolean; enable or disable numba jit entirely; Requires python␣
→˓kernel restart!

import yaml ␣
→˓ ## Workaround to save the jitdisable keyword to a separate config␣
→˓file.

names={'DISABLE_JIT' : self.jitdisable} ␣
→˓ ## Working kernel needs to be reset for numba to pick up the change

with open('.numba_config.yaml', 'w') as file: ␣
→˓ ## more info on numba flags can be found here: https://numba.
→˓readthedocs.io/en/stable/reference/envvars.html

yaml.dump(names, file)

Python class that unpacks control parameters used in all modules of the inversion setup. This is an editable imported
module that users access and modify. The yaml import seen here is used to configure Numba global options.

Hint: The python importlib module is used in the example notebooks to reload changes.

4.2.1 General Parameters

dbdir [] string
Directory where the database is stored after being built with CLEDB_BUILD. This is the main directory containing
all ions, and not one of the individual ion subdirectories (e.g. fe-xiii_1074, etc.).

verbose [] uint
Verbosity controlling parameter that takes vales 0-3. Levels are incremental (e.g. lev 3 includes outputs from
levels 1 and 2).

• verbose == 0: Production - Silent run.

• verbose == 1: Interactive Production - Prints the current module, basic information, and loop steps along
with operations currently being run. Global errors will produce a message.

• verbose == 2: Debug - Enables additional warnings for common caveats and error messages. This will
also enable execution timing for selected sections.

• verbose == 3: Heavy Debug - Will reveal the pixel being run along with any issues or warnings detected
at the pixel level. Output will be hard to navigate!

4.2.2 PREPINV Parameters

integrated [] boolean
To use for calibrated COMP/UCOMP data. In this case, the profiles are integrated across the line sampling
points. This parameter defaults to 0 to be applicable to spectroscopic data such as DKIST.

dblinpolref [] rad
Assign the database reference direction of linear polarization. Angle direction is trigonometric. Values are in
radians; e.g. 0 for horizontal ->0deg; np.pi/2 for vertical ->90deg rotation in linear polarization QU. Paraschiv &
Judge, SolPhys, 2022 and the CLE <https://github.com/arparaschiv/coronal-line-emission> database building
functions conventionally use a vertical direction for the direction used in computing the database (at Z=0 plane)

4.2. Ctrl. Parameters ctrlparams.py Class 17

https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract
https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

of dblinpolref =0. See CLE routine db.f line 120. If the database building reference direction is changed, this
parameter needs to match that change.

instwidth [] nm
Instrumental line broadening/width in nm units should be included here if known. It is not clear at this point if this
will be a constant or a varying keyword for one instrument. Setting a instwidth = 0 value will skip including an
instrumental contribution when computing non-thermal widths (specout[:,:,:,9]) output in the SPECTRO_PROC
module.

4.2.3 PROC Parameters

nsearch [] uint
Number of solutions to compute and return for each pixel.

maxchisq [] float
Stops searching for solutions in a particular pixel if fitting residuals surpassed this threshold.

gaussfit [] uint
Used to switch between CDF fitting and Gaussian parametric fitting with optimization.

• gaussfit == 0: Process the spectroscopic line parameters using only the CDF method.

• gaussfit == 1: Fit the line using an optimization based Gaussian procedure. This approach requires a set of
4 guess parameters. These are the approximate maximum of the emission (max of curve), the approximate
wavelength of the core of the distribution(theoretical center of the line), its standard deviation (theoretical
width of 0.16 nm), and an offset (optional, hard-coded as 0).

• gaussfit == 2: (Default) Fit the line using a optimization based Gaussian procedure. In this case, the initial
guess parameters are fed in from the results of the CDF solution. In this case, the curve fitting theoretically
optimizes for a more accurate solution, with sub-voxel resolution.

bcalc [] uint
Controls how to compute the field strength in the case of 2-line observations.

• bcalc == 0: Use the field strength ratio of the first coronal line in the list. Only applicable when Stokes V
measurements exist; e.g. iqud is disabled.

• bcalc == 1: Use the field strength ratio of the second coronal line in the list. Only applicable when Stokes
V measurements exist; e.g. iqud is disabled.

• bcalc == 2: Use the average of field strength ratios of the two coronal lines. Only applicable when Stokes
V measurements exist; e.g. iqud is disabled.

• bcalc == 3: Assigns the field strength from the Doppler oscillation inputs. Only applicable when iqud is
enabled.

reduced [] boolean
Parameter to reduce the database size before searching for solutions by using the linear polarization measure-
ments. Dimensionality of db is reduced by over 2 orders of magnitude, enabling significant speed-ups.

Warning: Below figure shows that the solution ordering, or even sistematic differences might be altered in
certain circumstances when compared to a full search. This is occuring predominantly near field component
reversals and around Van Vleck locii where meaningful solutions are harder to recover. 98% of pixels are
not affected. Needlesly, even in the affected areas, the angle differences are modulo 2:math:pi, and thus the
basic geometrical orientation would not be significantly altered.

18 Chapter 4. Input Variables and Parameters

CLEDB solar-coronal-inversion, Release update-readthedocs

iqud [] boolean
Switches the main matching function of CLEDB_PROC in order to utilize either Stokes V or Doppler oscillations
to compute the magnetic field strength and orientation.

4.2.4 Numba Jit Parameters

jitparallel [] boolean
When Jit is enabled (jitdisable == False), it controls whether parallel loop-lifting allocations are requested, as
opposed to just optimize the execution in single-thread-mode.

jitcache [] boolean
Jit caching for slightly faster repeated execution. Enable only after no changes to @jit or @njit functions are
required. Otherwise kernel restarts are needed to clear caches.

jitdisable [] boolean
Debug parameter to control the enabling of Numba Just in Time compilation (JIT) decorators throughout. Higher
level verbosity requires disabling the JIT decorators. This functionality can only be done via Numba GLOBAL
flags that need to be written to a configuration file .numba_config.yaml. Any change of this parameter requires
a kernel restart.

4.2. Ctrl. Parameters ctrlparams.py Class 19

CLEDB solar-coronal-inversion, Release update-readthedocs

4.3 Constants constants.py Class

-*- coding: utf-8 -*-
"""
@author: Alin Paraschiv paraschiv.alinrazvan+cledb@gmail.com
##
"""
TODO: update final form of constants and units

To load the class:
#consts=Constants()
#print(vars(consts))
#print(consts.__dict__)

class Constants:
def __init__(self,ion):

Solar units in different projections
#self.solar_diam_arc = 1919
#self.solar_diam_deg = self.solar_diam_arc/3600.
#self.solar_diam_rad= np.deg2rad(0.0174533self.solar_diam_deg)
#self.solar_diam_st = 2.*np.pi*(1.-np.cos(self.solar_diam_rad/2.))

##Physical constants
self.l_speed = 2.9979e+8 ## speed of light [m s^-1]
self.kb = 1.3806488e-23 ## Boltzmann constant SI [m^2␣

→˓kg s^-2 K^-1];
self.e_mass = 9.10938356e-31 ## Electron mass SI [Kg]
self.e_charge = 1.602176634e-19 ## Electron charge SI [C]
self.bohrmagneton = 9.274009994e-24*1.e-4 ## Bohr magneton [kgm^2s^2 G^-

→˓1]; Mostly SI; T converted to G;
self.planckconst = 6.62607004e-34 ## Planck's constant SI [m^2␣

→˓kg s^-1];

ion/line specific constants
if (ion == "fe-xiii_1074"):

self.ion_temp = 6.25 ## Ion temperature SI [K]; li+2017
→˓<--Chianti

self.ion_mass = 55.847*1.672621E-27 ## Ion mass SI [Kg]
self.line_ref = 1074.62686 ## CLE Ion referential wavelength␣

→˓[nm]
#self.line_ref = 1074.68 ## Ion referential wavelength [nm]
self.width_th = self.line_ref/self.l_speed*(4.*0.69314718*self.kb*(10.**self.

→˓ion_temp)/self.ion_mass)**0.5 ## Line thermal width
self.F_factor= 0.0 ## Dima & Schad 2020 Eq. 9
self.gu = 1.5 ## upper level g factor
self.gl = 1 ## lower level g factor
self.ju = 1 ## upper level angular␣

→˓momentum
self.jl = 0 ## lower level angular␣

→˓momentum
self.g_eff=0.5*(self.gu+self.gl)+0.25*(self.gu-self.gl)*(self.ju*(self.ju+1)-

→˓self.jl*(self.jl+1)) ## LS coupling effective Lande factor; e.g. Landi& Landofi␣
→˓2004 eg 3.44; Casini & judge 99 eq 34

(continues on next page)

20 Chapter 4. Input Variables and Parameters

CLEDB solar-coronal-inversion, Release update-readthedocs

(continued from previous page)

elif (ion == "fe-xiii_1079"):
self.ion_temp = 6.25 ## Ion temperature SI [K]; li+2017

→˓<--Chianti
self.ion_mass = 55.847*1.672621E-27 ## Ion mass SI [Kg]
self.line_ref = 1079.78047 ## CLE Ion referential wavelength␣

→˓[nm]
#self.line_ref = 1079.79 ## Ion referential wavelength [nm]
self.width_th = self.line_ref/self.l_speed*(4.*0.69314718*self.kb*(10.**self.

→˓ion_temp)/self.ion_mass)**0.5 ## Line thermal width
self.F_factor= 0.0 ## Dima & Schad 2020 Eq. 9
self.gu = 1.5 ## upper level g factor
self.gl = 1.5 ## lower level g factor
self.ju = 2 ## upper level angular momentum
self.jl = 1 ## lower level angular momentum
self.g_eff=0.5*(self.gu+self.gl)+0.25*(self.gu-self.gl)*(self.ju*(self.ju+1)-

→˓self.jl*(self.jl+1)) ## LS coupling effective Lande factor; e.g. Landi& Landofi␣
→˓2004 eg 3.44; Casini & judge 99 eq 34

elif (ion == "si-x_1430"):
self.ion_temp = 6.15 ## Ion temperature SI [K]; li+2017

→˓<--Chianti
self.ion_mass = 28.0855*1.672621E-27 ## Ion mass SI [Kg]
self.line_ref = 1430.2231 ## CLE Ion referential wavelength␣

→˓[nm] ;;needs to be double-checked with most current ATOM
#self.line_ref = 1430.10 ## Ion referential wavelength [nm]
self.width_th = self.line_ref/self.l_speed*(4.*0.69314718*self.kb*(10.**self.

→˓ion_temp)/self.ion_mass)**0.5 ## Line thermal width
self.F_factor= 0.5 ## Dima & Schad 2020 Eq. 9
self.gu = 1.334 ## upper level g factor
self.gl = 0.665 ## lower level g factor
self.ju = 1.5 ## upper level angular momentum
self.jl = 0.5 ## lower level angular momentum
self.g_eff=0.5*(self.gu+self.gl)+0.25*(self.gu-self.gl)*(self.ju*(self.ju+1)-

→˓self.jl*(self.jl+1)) ## LS coupling effective Lande factor; e.g. Landi& Landofi␣
→˓2004 eg 3.44; Casini & judge 99 eq 34

elif (ion == "si-ix_3934"):
self.ion_temp = 6.05 ## Ion temperature SI [K]; li+2017

→˓<--Chianti
self.ion_mass = 28.0855*1.672621E-27 ## Ion mass SI [Kg]
self.line_ref = 3926.6551 ## CLE Ion referential wavelength␣

→˓[nm] ;;needs to be double-checked with most current ATOM
#self.line_ref = 3934.34 ## Ion referential wavelength [nm]
self.width_th = self.line_ref/self.l_speed*(4.*0.69314718*self.kb*(10.**self.

→˓ion_temp)/self.ion_mass)**0.5 ## Line thermal width
self.F_factor= 0.0 ## Dima & Schad 2020 Eq. 9
self.gu = 1.5 ## upper level g factor
self.gl = 1 ## lower level g factor
self.ju = 1 ## upper level angular momentum
self.jl = 0 ## lower level angular momentum
self.g_eff=0.5*(self.gu+self.gl)+0.25*(self.gu-self.gl)*(self.ju*(self.ju+1)-

→˓self.jl*(self.jl+1)) ## LS coupling effective Lande factor; e.g. Landi& Landofi␣
→˓2004 eg 3.44; Casini & judge 99 eq 34

(continues on next page)

4.3. Constants constants.py Class 21

CLEDB solar-coronal-inversion, Release update-readthedocs

(continued from previous page)

else:
print("Not supported ion or wrong string. Ion not Fe fe-xiii_1074, fe-xiii_

→˓1079, si-x_1430 or si-ix_3934.\nIon specific constants not returned!")

Python class that unpacks physical constants needed during the inversion. The constants are mainly utilized by the
SPECTRO_PROC and BLOS_PROC modules. Ion specific and general atomic and plasma constant parameters are packed
herein. The class self-initializes for each requested ion providing its ion specific parameters in a dynamic fashion.

4.3.1 Physical Constants

solar_diam [float*4]
Solar diameter in arcsecond, degrees, radians, and steradian units.

l_speed [] float
Speed of light; Units in SI [m s−1]

kb [] float
Boltzmann constant; Units in SI [m−2 kg s−2 K−1]

e_mass [] float
Electron mass; Units in SI [Kg]

e_charge [] float
Electron charge; Units in SI [C]

planckconst [] float
Planck’s constant; Units in SI [m−2 kg s−1]

bohrmagneton [] float
Bohr Magneton; Units in mostly in SI. T converted to Gauss units [kg m−2 s−2 G−1]

4.3.2 Ion Specific Constants

Note: Four sets of these constants are provisioned for the four possible lines to invert.

ion_temp [] float
Ion temperature; Units in SI [K]

ion_mass [] float
Ion mass; Units in SI [Kg]

line_ref [] float
Theoretical line core wavelength position; Units in [nm]

Caution: Simulation examples might have different set line centers based on the spectral synthesis code used.
Doppler shift products might not compute correctly.

width_th [] float
Thermal width analytical approximation; Units in [nm]

F_factor [] float
Additional factor described by Dima & Schad, ApJ, 2020. Useful when calculating LOS products in the
BLOS_PROC module

22 Chapter 4. Input Variables and Parameters

https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

gu and gl [] float
LS coupling atomic upper and lower energy levels factors

ju and jl [] float
Atomic upper and lower level angular momentum terms

g_eff [] float
LS coupling effective Land𝑒 g factor

4.3. Constants constants.py Class 23

CLEDB solar-coronal-inversion, Release update-readthedocs

24 Chapter 4. Input Variables and Parameters

CHAPTER

FIVE

CLEDB_BUILD - DATABASE GENERATION

Purpose:
The CLEDB_BUILD module is used to generate a database of synthetic IQUV profiles for the four provisioned ions, with
a range of density estimations, range of possible LOS positions, and all possible magnetic angle configurations, for one
magnetic field strength B = 1. In normal circumstances this module is only run once per system where the inversion is
installed. A module diagram is provided in this section.

5.1 CLEDB_BUILD Configuration

Here we describe the scripts included in the config directory.

DB.INPUT
Main configuration file for the database generation. It contains the physical parameters configurations for the
databases to be generated.

* NY NED NX NBPHI NBTHETA
* standard 51 10 61 180 90
51 10 61 180 90
* ELNMIN ELNMAX YMIN YMAX XMIN XMAX BPMIN BPMAX BTMIN BTMAX␣
→˓

-1.5 2.3 1.000 1.500 -1.50 1.50 0.000 6.28318548 0.000 3.
→˓14159274
* above line is important to be kept with 3 spaces and same number of decimals for␣
→˓bash script to work

Danger: It is critical to keep the same number of parameter decimals and white spaces between the values when
modifying the DB.INPUT configuration file. The automated job-scripts that run the jobs are dependent on precisely
reading each entry.

ATOM.ion
This set of files contain the atomic configuration data to be used for calculations. Full level atoms would have
a too high computational requirement to use. To avoid this, we use reduced calculations. For example take the
Fe XIII lines. The atom configurations are set up as reduced 4-level and 6-transition calculations including the
M1 and E1/E2 transitions from upper levels to M1 upper levels. See Fig. 3 of Casini & Judge, ApJ, 1999 This
level/transition setup mimics the IQUV fluxes from a full level calculation for each of the the selected infrared
coronal lines.

25

https://ui.adsabs.harvard.edu/abs/1999ApJ...522..524C/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

Caution: Advanced understanding required. In general, users should not modify the ATOM files.

INPUT.ion(a/b)
These are input and configuration files that are read when generating databases. The wlmin and wlmax parameters
control which lines described in the ATOM.ion files are processed. In the case of Fe XIII, a separate INPUT.ion
configuration (a/b) is needed for each line to produce distinct database entries.

Hint: In the case of Fe XIII, a custom INPUT.ion configuration with wlmin and wlmax constraints that includes
both lines can be created. This would lead to the synthesis of a direct 2-line database. The sdb_preprocess
function in the CLEDB_PREPINV module is provisioned to process such a database configuration. This is an
alternate configuration that can be fairly straightforward to implement for a setup aimed at inverting only for the
Fe XIII pair. Please note that this is a legacy feature that should not be treated as a default/expected configuration
for generating databases.

IONEQ
Ionization equilibrium data from CHIANTI.

GRID.DAT
Defines the range and resolution of a CLE simulation. In the case of database building it has no significant
functionality and is only required due to CLE’s implicit dependency on it’s import.

db"xxxx"_"arch"
Executable CLE binaries for generating databases. xxxx is the used version of the CLE Fortran code. arch
can be linux, rclinux or darwin. The three different versions are provided in the distribution for cross-platform
compatibility.

• linux – Debian compiled

• rclinux – CentOs compiled on research computing system.

• darwin – mac osx x86 compiled.

Attention: Ideally, the xxxx version of the CLE code should match its latest stable release.

5.1.1 DB.INPUT Parameters

ny, ymin, ymax
Number of y (horizontal) heights in R⊙ units for which to compute database entries. The ny heights are spanned
between ymin and ymax values. Regardless of user input, polarization signal can not computed at this time for
R⊙ < 1 due to the assumptions and interpretation focused on off-limb coronal emission.

Attention: Observations show that the amount of polarization in Fe XIII drastically decreases with height.
One should not normally expect to reasonably recover full Stokes polarization signal at y > 1.5⊙.

ned, elnmin, elnmax
Number and range of ambient electron density values for which to compute calculations. elnmin and elnmax
define a logarithmic range in which to spread the ned densities. The center of this range is an analytical approxi-
mation of a standard electron density expected for a y height above the limb following the Baumbach formulation.
See equation 12 and discussion in Paraschiv & Judge, SolPhys, 2022 . For example, at y = 1.1R⊙ we expect a

26 Chapter 5. CLEDB_BUILD - Database Generation

https://github.com/arparaschiv/coronal-line-emission
https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

logarithm of density log(n𝑒) ~ 8 cm−3. Setting ned = 10, elnmin = -2 and elnmax = 2 will generate databases
for 10 density values logarithmically scaled between log(n𝑒) ≈ 6 - 10 cm−3.

Attention: Please keep in mind some potential inversion breaking assumptions. A reasonable density range
of log(n𝑒) 7-10 is compatible with:

i. low enough densities so that collisional depolarization becomes unimportant inside the Hanle saturated
regime;

ii. compatible with expected plasma densities in a standard 1.0-1.5R⊙ observation range (also remember
above point about polarization vs. height).

nx, xmin, xmax
Number of x (depth along the LOS) positions to compute databases for in R⊙ units. The nx positions are linearly
spanned between xmin and xmax values.

Attention: Due to geometric considerations, setting xmin and xmax values to more than ± 1.0 R⊙ will most
probably not result in practical benefits. This is because a higher 1.5 R⊙ apparent height, a 1.0 R⊙ depth
would correspond to an actual height above the limb of 1.8 R⊙. This is in the more extreme range of the
polarization formation vs height issue described above.

nbphi, bpmin, bpmax
Number and range of CLE 𝜙 magnetic LOS angles to compute. The nbphi angles are spread along a bpmin -
bpmax range set to 0 - 2𝜋 by default.

nbtheta, btmin, btmax
Number and range of magnetic CLE 𝜗 Azimuth angles to compute. The nbtheta range is set to btmin - btmax
. By default this is set to a 0 - 1𝜋 reduced range due to spherical transformation definitions.

Danger: Due to how the problem is posed, please do not interchange the maximum ranges between the two
magnetic angles, as it would lead to execution errors.

Danger: The following apply both to CLE and CLEDB conventions:

• ny, ymin, ymax have an odd number of points in the intervals to capture both interval ends in range. Con-
sequently, the range is traversed by ny-1 lenghts/intervals.

• nx, xmin, xmax have an odd number of points in the interval to capture the exact traversal through 0 and
both ends. Consequently, the range is traversed by nx-1 lenghts/intervals.

• nbphi, bpmin, bpmax and nbtheta, btmin, btmax have an even number of points in the interval and
the range is traversed by nbphi and nbtheta (no -1!) in order to skip the last entries corresponding to bpmax
and btmax. This is done in order to not introduce degeneracies for the repeated entries that would appear at
0 <–> 2pi and 0 <–> pi, respectively.

This convention for traversal needs to be followed precisely through both CLE and CLEDB to insure a corect
rendering of solutions and a correct database matching when using CLEDB_GETSUBSET .

5.1. CLEDB_BUILD Configuration 27

CLEDB solar-coronal-inversion, Release update-readthedocs

5.2 The CLEDB_BUILD Job Script

The rundb_1line.sh job script will ingest the ATOM, INPUT, DB.INPUT, etc. files and split the job into available CPU
threads. The user is asked for keyboard input on how many threads to use and for which line/ion to generate a database.

The script runs in a Bash shell terminal session. It can handle both Linux and Darwin (OSX) environments. For OSX,
an additional dependency is required. Users need to install the GNU implementation of the sed command. The simplest
way is to achieve this is by using the homebrew environment:

brew install gnu-sed

The job script will split the serial ny tasks on the requested CPU threads and run in dedicated folders that will be
sanitized upon completion, preserving only the output database files and metadata headers.

Logs for each script (“X”) are written in real time and can be checked interactively while the job is running.

tail BASHJOB_"X".LOG

A Slurm enabled version, rundb_1line_slurm which has hard-coded choices to be compatible with headless runs is also
provided. The parameters need to be checked manually before running. Detailed information about the Slurm enabled
routines can be found in the detailed README-SLURM section.

Note: A standalone README-SLURM.MD readme is included in the inversion root directory.

Extensive notes about the parallel job script implementations are found in the detailed README-RUNDB section.

Note: A standalone README-RUNMD.md readme is included with the CLEDB_BUILD module.

28 Chapter 5. CLEDB_BUILD - Database Generation

CLEDB solar-coronal-inversion, Release update-readthedocs

5.3 CLEDB_BUILD Output

Databases for one up to four of the currently available ions/lines can be constructed by running the job script succes-
sively.

Tip: As long as enough free CPU threads are available, multiple rundb_1line.sh jobs can be started simultaneously
for different ions as there is no storage or computational overlap.

The output database is written to the storage disk. Each individual line will be written in its dedicated folder.

Note: Prior to git commit update-iqud CLEDB_BUILD wrote compressed data using a simple float64 → int16 con-
version using a division constant, set to -2.302585092994046e15. Same constant needs to be used when writing but
also when reading databases into memory as part of the CLEDB_PREPINV module. This approach proved to create
numerical instabilities and is currently disabled.

A database folder hierarchical system is needed in order to ingest the selected database calculations by the
CLEDB_PREPINV module. The folder system is defined as: element-ionstage_line.

1. fe-xiii_1074
2. fe-xiii_1079
3. si-x_1430
4. si-ix_3934

Note: A fifth option for directly writing two line databases for Fe XIII is still preserved as a legacy option as described
above. The .hdr and .DAT database files need to be placed in the main ctrlparams dbdir key without a specific line
subfolder.

This convention is used by all three modules of CLEDB.

Warning: Running successive jobs for the same ion/line will erase its database calculations if they exist!

Individual data stores for each computed height are created to ease I/O operations when reading databases into memory
for inverting. A db”xxxx”.dat file is generated at each y height in the ny set, where “xxxx” represents the distance above
the limb in units of R⊙ (DB0000.dat corresponds to the solar limb or a height of 1.00R⊙). A metadata db.hdr file is
produced in the individual line directory that contains the range dimensions and parameters applicable to any one
database set of files.

Danger: The user should not change the parameter configurations in DB.INPUT between multiple ion/line runs
that should be part of the same database.

Generating ∼ 5 · 108 calculations per line for two lines will occupy ≈ 32 Gb of disk space with no storage compression.

5.3. CLEDB_BUILD Output 29

CLEDB solar-coronal-inversion, Release update-readthedocs

30 Chapter 5. CLEDB_BUILD - Database Generation

CHAPTER

SIX

CLEDB_PREPINV - PRE-PROCESSING

Purpose:
The CLEDB_PREVINV module processes both the input data and the CLEDB_BUILD generated databases to prepare for
the main inversion processing.

For 1-line cases, only the observation is pre-processed. Observation keywords are ingested, the geometric height is
computed and the spectroscopic IQUV profiles are integrated.

In addition for 2-line observations, the observation linear polarization is rotated to match the database calculation as
described in Paraschiv & Judge, SolPhys, 2022. The module then performs a height match between the input data and
database configuration. Only the optimal subset of database height entries are pre-loaded into memory to minimize
I/O operations but also to avoid I/O bottlenecks when running the analysis routines of the CLEDB_PROC module.

6.1 CLEDB_PREPINV Module Functions

Note: The ◇, ◁, and ◁◁ symbols respectively denote main, secondary, and tertiary (helper) level functions. Main
functions are called by the example scripts. Secondary functions are called by the main functions, and tertiary from
either main or secondary functions.

◇ SOBS_PREPROCESS
Main function to process an input observation and ingest the relevant header keywords. Generally, this function
iterates over the observation maps and sends each pixel to the internal functions. It returns a processed obser-
vation array (input dependent) that is ready for analysis. Additional products are calculated. e.g. a height map
(used to match databases), signal statistics, etc. via its subfunctions.

◁ OBS_CALCHEIGHT
Calculates height map of the same xy dimensions as the input array. Each pixel encodes the solar height in
units of R⊙.

◁ OBS_INTEGRATE
Estimates background counts using a cumulative distribution function (CDF) statistical method, then in-
tegrates along the wavelength dimension, in all IQUV components of all input lines. Profile integration is
required because the database dimensionality and inversion computational times would not be feasible when
processing full-spectra observations. See Paraschiv & Judge, SolPhys, 2022 for additional information.

◁◁ OBS_CDF
Computes the CDF distribution from spectra corresponding to one voxel.

◁ OBS_QUROTATE
If ingested a 2-line observation, the Stokes Q and U components are rotated to match the database’s refer-
ence direction with the pbservation reference direction. The observation reference direction should be read

31

https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract
https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

as input from the header metadata. This enables using just a 1D database computation (along y heights)
to match the any observed Stokes profiles, under any linear polarization reference in a 2D map with these
applied rotational transforms. See Paraschiv & Judge, SolPhys, 2022 for extended information.

◇ SDB_PREPROCESS
Main function for selecting and reading into memory the optimal database calculations that are compatible with
the observations processed via SOBS_PREPROCESS.

◁ SDB_FILEINGEST
Glob the database directory to ingest available database heights and process the database configuration
using the header metadata.

◁ SDB_FINDELONGATION
Compares the database entries (along ny) with the heights covered by the observation to deduce the clos-
est matching database entries and minimizes the number of database DBXXXX.dat files to be read into
memory.

◁ SDB_PARSEHEADER
Parses the database header information from the db.hdr file.

◁◁ SDB_LCGRID
Computes the grid spacing for the logarithm of density ranges covered in the database. The grid is
correspondent to the density configuration in DB.INPUT of the database calculations.

◁ SDB_READ
Reads all needed database files. This concludes all the disk I/O operations done during one run of the
inversion.

Warning: As databases are written as binary files, the variable type fed to the np.fromfile reader needs
to match the Fortran datatype CLE dbe.f uses to write the calculations. Currently these are set as single
precision floats of np.float32 and REAL types respectively.

The CLEDB_PREPINV module is not fully compatible with Numba non-python mode, due to disk I/O operations. All
non-python compatible functions are enabled in non-python mode while the rest are compiled in object-mode via the
hard-coded “forcedobj=True” flag in the @jit decorators. The Python Modules section provides more details on the
differences between the two Numba modes. The algorithm flow is described in the below diagram.

32 Chapter 6. CLEDB_PREPINV - Pre-processing

https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

6.2 CLEDB_PREPINV Main Variables

sobs_tot [xs,ys,nline*4] float array
Contains the background subtracted, integrated, and normalized Stokes IQUV spectra for 1-line ([xs,ys,4]) or
2-line ([xs,ys,8]) observations.

sobs_totrot [xs,ys,nline*4] float array
Derived from sobs_tot. The Stokes Q and U components are rotated along the center of the Sun to match
the reference direction for linear polarization (the reference in which the database is created by CLEDB_BUILD).
In inner functions of CLEDB_PROC only one pixel is passed at a time as sobs_1pix. The variable is initialized
as a “zero” array that is returned in the case of 1-line observations to keep a standardized function input/output
needed for Numba vectorization.

background [xs,ys,nline*4] float array
Returns averaged background counts for each observed voxel and each Stokes component.

rms [xs,ys,nline*4] float array
Returns the root mean square (RMS) of the total counts in each Stokes profile. The rms calculation is corre-
spondent to the ratio between intensity in the line core and background counts (the variance). This measurement
shows the quality in the signal for a particular observed voxel.

yobs [xs,ys] float array
The header keyword input is used to construct a height projection for each observed voxel in units or R⊙. In

6.2. CLEDB_PREPINV Main Variables 33

CLEDB solar-coronal-inversion, Release update-readthedocs

inner functions of CLEDB_PROC only one pixel is passed at a time as yobs_1pix.

aobs [xs,ys] float array
Stores the linear polarization angle transformation performed by the OBS_QUROTATE function. This infor-
mation will be used to derotate the matched database profiles found by the CLEDB_INVPROC 2-line inversion
function for comparison. In inner functions of CLEDB_PROC only one pixel is passed at a time as aobs_1pix. The
variable is initialized and returned as a “zero” array in the case of 1-line observations due to Numba vectorization
requirements.

dbsubdirs [string] or [string list]
Contains the directory structure formatted as described in the CLEDB_BUILD Output section.

database [ned,nx,nbphi,nbtheta,nline*4] list of float arrays
The list is the minimal subset of databases that are compatible with the observation taken from the set of ny
entries of the database.

dbhdr [ints, floats and strings] list
Database header information containing the ranges and physical parameters used to generate the database.

db_enc [xs,ys] float array
Keeps an encoding of which of the memory loaded databases (elements in list of databases) to use for matching
in each pixel.

issuemask [xs,ys] float array
An array that encodes issues appearing during processing. This array will be updated across all modules. The
tentative issuemask implementation is described separately.

Note: Input variables, e.g. header *keys, sobs_in, ctrlparams, constants, etc. that are described in the Input
Variables and Parameters section are not repeated in this section.

34 Chapter 6. CLEDB_PREPINV - Pre-processing

CHAPTER

SEVEN

CLEDB_PROC - ANALYSIS AND INVERSION

Purpose:
Three main functions, SPECTRO_PROC, BLOS_PROC, and CLEDB_INVPROC are grouped under the
CLEDB_PROC data analysis and inversion module. Based on the 1-line or 2-line input data, two or three modules are
called. Line of sight or full vector magnetic field outputs along with plasma, geometric and spectroscopic outputs are
inverted here. The algorithm flow and a data processing overview is described in the flowchart.

35

CLEDB solar-coronal-inversion, Release update-readthedocs

7.1 The SPECTRO_PROC Function

Purpose:
Ingests the fully prepped data from sobs_preprocess and produces spectroscopic outputs for each input line. Part of the
outputs are used downstream in BLOS_PROC or CLEDB_INVPROC. This module requires data in the formats as
resulting from the CLEDB_PREPINV module. Optional sub-modules are envisioned to be integrated into this processing
based on upstream instrument processing and retrieved data quality. This is a computationally demanding and time
consuming function.

Note: The ◇, ◁, and ◁◁ symbols respectively denote main, secondary, and tertiary (helper) level functions. Main
functions are called by the example scripts. Secondary functions are called by the main functions, and tertiary from
either main or secondary functions.

7.1.1 SPECTRO_PROC Main Functions

◇ SPECTRO_PROC
◁ CDF_STATISTICS

Performs pixelwise analysis on the stokes IQUV spectra for each line and computes relevant spec-
troscopic outputs (see specout) by using via a ctrlparams gaussfit key. By default a gaussian fitting
coupled with non-parametric approaches, namely the analysis of CDF functions is utilized.

◁◁ OBS_CDF and ` OBS_GAUSSFIT
These are two helper routines used by CDF_STATISTICS to perform parameter fits and estima-
tions.

Hint: The ctrlparams gaussfit key == 2 represents the slowest component of the entire
CDF_STATISTICS block. On the other hand, it is the most accurate and reliable profile fitting
method of the three options.

◁ ML_LOSDISENTANGLE (Opt.)
Provisioned to be implemented at a later time. If observations permit, uses Machine Learning tech-
niques for population distributions to help disentangling multiple emitting structures along the LOS
in situations where the single point assumption might fail.

◁ LEV2CALIB_WAVE (Opt.)
Provisioned to be implemented at a later time. Higher order wavelength calibration using the spectro-
scopic profiles. See Ali, Paraschiv, Reardon, & Judge, ApJ, 2022 for additional details. This function
can couple if the upstream wavelength accuracy of the input observation is lower than 0.005 nm.

Important: Upstream Level-1 calibration for DKIST is provisioned to match or exceed this accuracy
requirement. Implementation is of low priority.

◁ LEV2CALIB_ABSINT (Opt.)
To be implemented at a later time, if feasible. Absolute intensity calibration function that produces
an additional output, the calibrated intensity in physical units. The approach is not easily automated
as it requires a more convoluted and specific planning of the observations to gather the necessary
input data.

36 Chapter 7. CLEDB_PROC - Analysis and Inversion

https://ui.adsabs.harvard.edu/abs/2022ApJ...932...22A/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

Important: This functions was provisioned in the incipient stages of the pipeline design. Subsequently,
it was found that CLEDB can utilize only normalized Stokes profiles such that absolute calibrations are
not required (see Paraschiv & Judge, SolPhys, 2022). Implementation is halted at this time.

7.1.2 SPECTRO_PROC Main Variables

sobs_cal [nx,ny,sn,4] float array (opt.)
Optional calibrated level-2 data in intensity and or wavelength units. This array would be used by the
CDF_STATISTICS function instead of sobs_in.

Note: As LEV2CALIB_ABSINT and LEV2CALIB_WAVE are not currently implemented, sobs_cal is cur-
rently just a placeholder.

specout [nx,ny,nline,12] output float array

Returns 12 spectroscopic output products, for each nline input line and for every pixel location.

• specout[:, :, :, 0]
Wavelength position of the line core. Units are [nm].

• specout[:, :, :, 1]
Doppler shift with respect to the theoretical line core defined in the constants class line_ref key. Units
are [nm].

• specout[:, :, :, 2]
Doppler shift with respect to the theoretical line core defined in the constants class line_ref key. Units
are [km s−1].

• specout[:, :, :, 3:6]
Intensity at computed line center wavelength (specout[:, :, :, 0]) for Stokes I , Stokes Q and
U. Units are ADU or calibrated physical units if LEV2CALIB_ABSINT is utilized.

• specout[:, :, :, 6]
Intensity at lobe maximum for Stokes V . The signed “core” counts are measured in the core of the
absolute strongest lobe. Thus, the Stokes V measurement will not match the wavelength position of
the Stokes IQU intensities. Units are ADU or calibrated physical units if LEV2CALIB_ABSINT is
utilized.

Attention: If the ctrlparams class iqud key == True, this dimension will be returned implicitly as
0.

• specout[:, :, :, 7]
Averaged background intensity outside the line profile for the Stokes I component. Since background
counts are in theory independent of the Stokes measurement, we utilize just this one realization. Units
are ADU or calibrated physical units if LEV2CALIB_ABSINT is used.

• specout[:, :, :, 8]
Total line FWHM. Units are [nm].

• specout[:, :, :, 9]
Non-thermal component of the FWHM line width. A measure or estimation of the instrumental line
broadening/width will significantly increase the accuracy of this determination. Units are [nm].

7.1. The SPECTRO_PROC Function 37

https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

Attention: Sporadic pixels close to limb in synthetic data exhibited very narrow profiles but
otherwise they were deemed usable by the statistics tests. This turns into a problem that will throw
invalid value runtime warnings when computing this quantity. To fix, we set specout[:, :,
:, 9] = 0 in all such occurences.

• specout[:, :, :, 10]
Fraction of linear polarization Pl with respect to the total Stokes I counts. Dimensionless.

• specout[:, :, :, 11]
Fraction of total polarization (linear + circular) Pv with respect to the total Stokes I counts. Dimen-
sionless.

Attention: Regardless if solving for 1-line or 2-line observations, specout will return both nline dimensions. In
the case of 1-line observations, the nline = 1 dimension corresponding to the hypothetical second line is returned
as 0 for all pixel locations. The unused dimension can be removed from the upstream example script, if needed.
This behavior is known and enforced to keep output casting static, making the codebase compatible with Numba
and speeding up execution.

7.2 The BLOS_PROC Function

Error: Stokes V observations are required for this analytical method. Thus, BLOS_PROC is incom-
patible with the IQUD setup.

Purpose:
Implements the analytical solutions of Casini & Judge, ApJ, 1999 and Dima & Schad, ApJ, 2020 to calculate the
LOS projected magnetic field strength and magnetic azimuth angle. The module returns two degenerate constrained
magnetograph solutions, where the one that matches the sign of the atomic alignment is more precise. The less precise
“classic” magnetograph formulation is also returned.

Attention: There is not enough information in 1-line observations to deduce which of the two degenerate solution
is “more precise”. The “classic” magnetograph estimation is less precise than the optimal degenerate constrained
magnetograph solution, but more precise than the other. The differences will vary from insignificant to tens of per-
cents of the magnetic field strength based on observation and magnetic geometry, and degree of linear polarization.
The choice of what product to use remains the prerogative of the user.

This branch requires only 1-line observations (4 stokes profiles). The setup is used to get as much magnetic information
as possible (the field strength and LOS projection) in the absence of a second line. For a sobs_tot input of 2-lines, the
module will produce independent products for each input line observation.

Hint: Observations of Si X 1430.10 nm will benefit from an additional alignemnt correction due to the non-zero F
factor of this transition. Additional details in Dima & Schad, ApJ, 2020.

38 Chapter 7. CLEDB_PROC - Analysis and Inversion

https://ui.adsabs.harvard.edu/abs/1999ApJ...522..524C/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

7.2.1 BLOS_PROC Main Functions

◇ BLOS_PROC

7.2.2 BLOS_PROC Main Variables

blosout [nx,ny,4*nline] output float array
The array returns 4 or 8 products containing LOS projected magnetic field estimations and magnetic azimuth
angle in G units at each pixel location.

• blosout[:, :, 0] and/or blosout[:, :, 4]
First degenerate constrained magnetograph solution for each respective line.

• blosout[:, :, 1] and/or blosout[:, :, 5]
Second degenerate constrained magnetograph solution for each respective line.

• blosout[:, :, 2] and/or blosout[:, :, 6]
“Classic” magnetograph solution for each respective line. Values lie in between the two above degen-
erate solutions.

• blosout[:, :, 3] and/or blosout[:, :, 7]
Magnetic field azimuth angle derived from the Q and U linear polarization components of the respec-
tive line; -𝜋 to 𝜋 range.

Warning: A 𝜋
2 degeneracy will manifest due to using arctan functions to derive the angle.

7.3 The CLEDB_INVPROC Function

Purpose:
Main 2-line inversion function. CLEDB_INVPROC compares the preprocessed observations with the selected
databases by performing a 𝜒2 goodness of fit measurement between each independent voxel and the complete set
of calculations in the matched database. If CLEDB_GETSUBSET is enabled via ctrlparams class getsubset key, a
presorting of the database entries to those that match the direction of observer linear polarization azimuth is performed.
After the main sorting is performed, the best database solutions are then queried with respect to the physical parameters
that gave the matched profiles. CLEDB_INVPROC acts like a pixel iterator and variable ingestion setup for either
CLEDB_MATCHIQUV or CLEDB_MATCHIQUD.

Caution: The reduced presorting will slightly change the final ordering of solutions in certain cases.

7.3.1 CLEDB_INVPROC Main Functions

◇ CLEDB_INVPROC
◇ CLEDB_MATCHIQUV

Matches a set of two full Stokes IQUV observations with a model observation of the same Stokes quantities.
Solutions are 2 times degenerate with respect to the LOS. Matching is done individually for one pixel in the input
array. This is a computationally demanding and time consuming function.

7.3. The CLEDB_INVPROC Function 39

CLEDB solar-coronal-inversion, Release update-readthedocs

◇ CLEDB_MATCHIQUD
Matches a set of two partial Stokes IQU observations with a model observation of the same Stokes quantities. The
matched solutions are initially more degenerate than CLEDB_MATCHIQUV, usually 4 timee with respect to
LOS and signed field strength combinations. We are currently evaluating the feasibility of including additional
information from Doppler oscillation tracking to recover field strengths and reduce degeneracies (to 2 times).
Matching is done individually for one pixel in the input array. This is a computationally demanding and time
consuming function.

Note: Based on the ctrlparams iqud key only one of the CLEDB_MATCHIQUV or CLEDB_MATCHIQUD
setups is selected and utilized.

◁ CLEDB_GETSUBSETIQUV
When enabled via ctrlparams, the information encoded in the Stokes Q and U magnetic azimuth is used to
reduce the matched database by approximately 1 order of magnitude in terms of observation-comparable
calculations.

◁ CLEDB_GETSUBSETIQUD
When reduced is enabled via ctrlparams, the information encoded in the doppler wave angle azimuth is used
to reduce the matched database by approximately 1 order of magnitude in terms of observation-comparable
calculations.

Attention: Tests done on CoMP and uCoMP data showed that when Doppler oscialtions are avaialble, using
the phase angle as a proxy (as opposed to the default linear polarization azimuth) for running reduced runs,
produces a more sharp output with better details especially around regions where magnetic polarity reverses.
CLEDB_GETSUBSETIQUD will use this information if available. This option can not be directly enabled
for IQUV matches yet, as the doppler oscilation data requires special observing conditions and separate
processing. Some altering of matching and subset selecting functions by the user will be required to enable
such a setup.

Important: If the subset calculation is enabled via ctrlparams, execution time in the case of large databases is
significantly decreased.

◁ CLEDB_PARTSORT
A custom function that performs a fast partial sort of the input array because only a small subset
of ctrlparams nsearch key solutions are requested via the ctrlparams nsearch key. This increases ex-
ecution times by a few factors when requesting just few nsearch solutions (< 100 on 108 entries
databases). CLEDB_PARTSORT is used by CLEDB_MATCHIQUV, CLEDB_MATCHIQUD, and
CLEDB_GETSUBSET functions. In CLEDB_MATCH, CLEDB_PARTSORT performs a < nsearch
sorting of database entries based on the 𝜒2 metric. In CLEDB_GETSUBSET, CLEDB_PARTSORT se-
lects for each 𝜙 angle orientation only the most compatible 𝜗 directions based on the Φ𝐵 azimuth given by
the linear polarization Q and U measurements.

◁ CLEDB_PHYS
Returns 9 physical and geometrical parameters corresponding to each selected database index following
the ctrlparams nsearch and maxchisq constraints. These products are returned as dimensions of the invout
output variable.

◁◁ CLEDB_PARAMS, CLEDB_INVPARAMS, CLEDB_ELECDENS, and CLEDB_PHYSCLE
These are helper functions that prop CLEDB_PHYS by providing interfaces with the parameters en-
coded in selected databases and helping transform quantities between different geometrical systems.

◁ CLEDB_QUDEROTATE

40 Chapter 7. CLEDB_PROC - Analysis and Inversion

CLEDB solar-coronal-inversion, Release update-readthedocs

The inverse function of OBS_QUROTATE. Derotates the Q and U components from each selected database
entry, in order to make the set of fitted solutions directly comparable with the original integrated input
sobs_tot observation.

7.3.2 CLEDB_INVPROC Main Variables

database [ned,nx,nbphi,nbtheta,nline*4] list of float arrays
Individual entries from the database list are fed to the CLEDB_MATCHIQUV or CLEDB_MATCHIQUD
functions. From the database list, only the best matching height entry via db_enc variable is passed via the
database_in internal variable.

database_sel [ned,nx,nbphi,nbtheta,nline*4] float array
An element reduced database list that is used by CLEDB_MATCHIQUV or CLEDB_MATCHIQUD for match-
ing the observation in one pixel. This alleviates memory shuffling and array slicing operations. The array is
reshaped into a 2D [ned*nx*nbphi*nbtheta,nline*4] form (e.g. [index,nline*4]). In the case where ctrlparams
reduction key is enabled, database_sel is additionally reduced with respect to the number of potential indexes
to match. Otherwise, the variable is only trimmed of the entries where the sign of Stokes V does not math the
observation.

sobs_totrot
Input variable to CLEDB_INVPROC described here.

sobs_dopp
Doppler oscillation magnetic field strength and POS orientation resulting from Doppler oscillation analysis.
The two utilized dimensions are sobs_dopp[:,:,0] and sobs_dopp[:,:,1] representing respectively the
magnetic field strength and the wave angle. The two other dimensions represent POS projections of the magnetic
field computed either via the linear polarization azimuth or the afore mentioned wave angle, but are not currently
utilized.

Caution: sobs_dopp is only used as input to CLEDB_MATCHIQUD when ctrlparams iqud is enabled. For
Numba consistency, an empty array is also passed to CLEDB_INVPROC when performing full IQUV inversions,
but it is never used.

chisq [ned*nx*nbphi*nbtheta,nline*4] float array
Computes the squared difference between the voxel IQUV measurements [nline*4] and each index element of
the database [index,nline*4].

sfound [nx,ny,nsearch,nline*4] output float array;
Returns the first nsearch de-rotated and matched Stokes IQUV sets from the database. These can be compared
to the input Stokes observation.

Caution: As the databases are only computed for B = 1 G, the Stokes V profiles will not match accurately.
The sign should match.

invout [nx,ny,nsearch,11] output float array
Main 2-line inversion output products. invout contains the matched database index, the 𝜒2 fitting residuals, and
9 inverted physical parameters, for all nsearch closest matching solutions with respect to the input observation.
The 11 parameters follow with individual descriptions.

• invout[:,:,:,0]
The index of the database entry that was matched at the nsearch rank. The index is used to retrieve the
encoded physics that match the observations.

7.3. The CLEDB_INVPROC Function 41

CLEDB solar-coronal-inversion, Release update-readthedocs

• invout[:,:,:,1]
The 𝜒2 residual of the matched database entry.

• invout[:,:,:,2]
Plasma density computed via the database. This output is applicable for the Fe XIII 1074.68/1079.79
line ratio (same ion). Other line combinations will produce less accurate results due to the relative
abundance ratios, that are varying dynamically. For a real-life observation, we do not consider trust-
worthy the implicit static relative abundance ratios of different ions, resulted from the CHIANTI tabular
data implicitly ingested via the ATOM files when build databases. Units are logarithm of number elec-
tron density in cm−3.

• invout[:,:,:,3]
The apparent height of the observation. Analogous to the yobs variable. Units are R⊙.

• invout[:,:,:,4]
Position of the dominant emitting plasma along the LOS. Units are R⊙.

• invout[:,:,:,5]
Magnetic field strength recovered via the ratio of observed stokes V to database Stokes V (computed
for B = 1 G); Uses ctrlparams class bcalc key. Units are [G].

Warning: Due to how the problem is posed, CLEDB_MATCHIQUV can only use bcalc = 0, 1,
or 2 while CLEDB_MATCHIQUD can only use bcalc = 3.

Attention: The bcalc estimation employs a logical test to avoid division by 0 in cases where the
Zeeman signal vanishes due to geometry in teh database. If the database Stokes V component is
less than 1e-7, then the matched field strength is set to 0 regardless of what the signal is in the
observation(usually it is very small, or noise)

• invout[:,:,:,6]
Magnetic field 𝜙 LOS angle in CLE frame. Range is 0 to 2𝜋.

• invout[:,:,:,7]
Magnetic field 𝜗 POS Azimuth angle in CLE frame. Range is 0 to 𝜋.

• invout[:,:,:,8]
Bx cartesian projected magnetic field depth/LOS component. Units are [G].

• invout[:,:,:,9]
By cartesian projected magnetic field horizontal component. Units are [G].

• invout[:,:,:,10]
Bz cartesian projected magnetic field vertical component. Units are [G].

Warning:
• Solutions are skipped if the 𝜒2 fitting residuals are greater than the limit set by the ctrlparams maxchisq key.

Thus, it is possible and even expected that less than requested ctrlparams nsearch solutions to be returned
for one observed voxel in both invout and sfound.

• Regardless of the number of solutions (if any) that are found inside the ctrlparams maxchisq and nsearch
constraints, the invout output array will keep its dimensions fixed and return “0” value fields to keep output
data shapes consistent. This is a Numba requirement. Only the index is set to “-1” to notify the user that no
result was outputted. sfound behaves similarly.

42 Chapter 7. CLEDB_PROC - Analysis and Inversion

CHAPTER

EIGHT

OUTPUT PRODUCTS

8.1 Output Variable Overview

The main CLEDB inversion algorithm outputs are stored in the following variables:

• specout
12 SPECTRO_PROC output products. These are described here.

• blosout
4 BLOS_PROC output products. These are described here.

• invout
11 CLEDB_INVPROC output products. These are described here.

• sfound
11 CLEDB_INVPROC matched profile list. These are described here.

• issuemask
Records any issues that arise in processing for each pixel (to be implemented). The issuemask will be
updated by both modules.

Note: The global process followed to produce these outputs is sketched in The CLEDB Modules.

8.2 Tentative Issuemask Implementation

The inversion will implement a confidence/issue map of size [nx,ny] for all spatial pixels in an input observation that
will be returned along with the main output products.

Important: Issuemask encoding not currently active. Final form to be decided and implemented.

Example of issuemask coding:

Code 0
No apparent problem in pixel.

Code 1
One or more of Stokes I, Q, U are lower than noise RMS threshold.

Code 2
Stokes V is lower than noise RMS threshold.

43

CLEDB solar-coronal-inversion, Release update-readthedocs

Code 4
Linear polarization is close to Van-Vleck ambiguity (warning).

Code 8
B𝐿𝑂𝑆 or Φ𝐵 is lower than noise threshold (for 1-line observations).

Code 16
Database fit failed to converge reliably (for 2-line obs).

Code 32
One or more of B, Φ𝐵 , Θ𝐵 𝜗 𝜙 are lower than noise threshold (for 2-line observations).

Code 64
-—————TBD———————-

Code 128
-—————TBD———————-

Encoding the information is done sequentially when progressing through the different modules. This will be done by
using powers of 2. The issuemask values thus become cumulative. Following the sketch map encoding from above, we
take for example a pixel from a 1-line observation with unreliable Stokes V signal. The uncertainty in Stokes V will
also lead to compromised B𝐿𝑂𝑆 information. Thus, the issuemask will encode a value of 10 for that respective pixel.

44 Chapter 8. Output Products

CHAPTER

NINE

THOROUGH README FILES

Warning:
• The sections below are dynamically linked to standalone readme markdown files. A documentation rebuild

will capture changes in any of the files.

• Consequentially, some dynamic links to functions or other documents will not work when displayed here as
they would from the direct rendering of the readmes. This is because relative paths cannot be kept consistent.

9.1 MAIN README

9.1.1 CLEDB Coronal Magnetic Field Database Inversion

Repository for CLEDB - the Coronal Line Emission DataBase inversion distribution.

Authors: Alin Paraschiv & Philip Judge. High Altitude Observatory & National Solar Observatory

Contact: arparaschiv “at” ucar.edu; paraschiv.alinrazvan+cledb “at” gmail.com

Main aim:

Invert coronal vector magnetic field products from observations of polarized light. The algorithm takes arrays of one
or two sets of spectro-polarimetric Stokes IQUV observations to derive line of sight and/or full vector magnetic field
products.

Applications:

Inverting magnetic field information from spectro-polarimetric solar coronal observations from instruments like DKIST
Cryo-NIRSP; DL-NIRSP; MLSO COMP/UCOMP.

45

https://github.com/arparaschiv/solar-coronal-inversion
https://cledb.readthedocs.io/en/latest/?badge=latest
https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract

CLEDB solar-coronal-inversion, Release update-readthedocs

Documentation

1. Extensive documentation, including installation instruction, dependencies, algorithm schematics and much
more is available on CLEDB.READTHEDOCS.IO A git distribution PDF build is also provided.

2. In-depth documentation for the Bash & Fortran parallel database generation module is provided in README-
RUNDB.md.

3. Installation and usage on RC systems is described in README-SLURM.md.

4. This is a beta-level release. Not all functionality is implemented. TODO.md documents updates, current issues,
and functions to be implemented in the near future.

System platform compatibility

1. Debian+derivatives Linux x64 – all inversion modules are fully working.

2. RC system CentOS linux x64 – all inversion modules are fully working. Additional binary executable is provided.
May require local compiling.

3. OSX (Darwin x64) Catalina and Big Sur – all inversion modules are fully working; One additional homebrew
package required. See README-CODEDOC.pdf.

4. Windows platform – not tested.

Examples

Install the CLEDB distribution, generate databases, and update the database save location in the ctrlparams.py class, as
described in the README-CODEDOC. Afterwards, both 1-line and 2-line implementations of CLEDB can be tested
with synthetic data using the two provided Jupyter notebook examples

1. test_1line.ipynb

2. test_2line_IQUV.ipynb

The test data are hosted separately. These are called by enabling the corresponding 1.a-1.e cells in the test notebooks
and scripts. See the documentation for extended details regarding the included datafiles.

• 1.a synthetic CLE 3 dipole data.

• 1.b synthetic CLE current-sheet data will be available soon.

• 1.c Only for internal testing.

• 1.d CoMP observation data.

• 1.e CoMP doppler analysis results for the 1.d datacube.

For terminal only compute systems the test data can be downloaded via the shell interface with the following method:

i. Load the following gdrive wrapper script into your bash window directly, or introduce it in your .bash_alias setup.

function gdrive_download () { CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt --
→˓keep-session-cookies --no-check-certificate "https://docs.google.com/uc?
→˓export=download&id=$1" -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p'); wget --
→˓load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=
→˓$CONFIRM&id=$1" -O $2; rm -rf /tmp/cookies.txt; }

ii. Download the file using its gdrive FILE_ID from the download link (1.a test data FILE_ID = 1beyD-
fZbm6epMne92bqlKXcgPjYI2oGRR):

46 Chapter 9. Thorough Readme Files

https://cledb.readthedocs.io/en/latest/
https://cledb.readthedocs.io/en/latest/install.html#example-test-data
https://drive.google.com/file/d/1beyDfZbm6epMne92bqlKXcgPjYI2oGRR/view?usp=sharing
https://drive.google.com/file/d/1AdAqIvsiXEV6RK5UiGWcu-1bovs0oOGr/view?usp=sharing
https://drive.google.com/file/d/1-hPiRRYRS6de_0zWz1k2UU1rIKOEbPOu/view?usp=sharing

CLEDB solar-coronal-inversion, Release update-readthedocs

gdrive_download FILE_ID local_path/local_name (sometimes needs to be run two times to␣
→˓set cookies correctly!)

Note: The script versions of all tests test_1line.py and test_2line.py together with the test_cledb_slurm.sh are slurm
enabled to be used for headless RC system runs. These offer the same functionality as the notebooks (from which they
are directly generated from). See the dedicated README-SLURM for additional information.

Both test examples are expected to fully execute with parallel job spawning via Numba/JIT in a correct installation.

Works that fundament and support the CLEDB inversion

1. Paraschiv & Judge, SolPhys, 2022 covered the scientific justification of the algorithm, and the setup of the
CLEDB inversion.

2. Judge, Casini, & Paraschiv, ApJ, 2021 discussed the importance of scattering geometry when solving for coronal
magnetic fields.

3. Ali, Paraschiv, Reardon, & Judge, ApJ, 2022 performed a spectroscopic exploration of the infrared regions of
emission lines available for inversion with CLEDB.

4. Dima & Schad, ApJ, 2020 discussed potential degeneracies in using certain line combinations. The one-line
CLEDB inversion utilizes the methods and results described in this work.

5. Schiffmann, Brage, Judge, Paraschiv & Wang, ApJ, 2021 performed large-scale Lande g factor calculations for
ions of interest and discusses degeneracies in context of their results.

6. Casini & Judge, ApJ, 1999 and Judge & Casini, ASP proc., 2001 described the theoretical line formation process
implemented in CLE, the coronal forward-synthesis code that is currently utilized by CLEDB.

9.2 README-RUNDB

9.2.1 CLEDB Parallel Database Generator

README for running CLE database calculations on multiple CPU threads.

Contact: Alin Paraschiv (arparaschiv at ucar edu)

History for BUILD module:

• ARP: 20210617 - initial release.

• ARP: 20210827 - Added a Slurm enabled version of the script for batch jobs on RC systems.

• ARP: 20210915 - Rewrote the thread scaling to allocate tasks uniformly across threads; Both interactive and batch
scripts now can utilize RC Slurm capabilities. The interactive version can only use Slurm allocated resources
inside interactive jobs. The batch dedicated version can utilize scratch directories; It copies final outputs in a
user’s project directory after finalizing tasks.

• ARP: 20221222 - Updated both scripts to fix an error with calculating the optimal heights that are scaled across
available nodes.

9.2. README-RUNDB 47

https://numba.readthedocs.io/en/stable/
https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...912...18J/abstract
https://ui.adsabs.harvard.edu/abs/2022ApJ...932...22A/abstract
https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract
https://ui.adsabs.harvard.edu/abs/2021ApJ...923..186S/abstract
https://ui.adsabs.harvard.edu/abs/1999ApJ...522..524C/abstract
https://ui.adsabs.harvard.edu/abs/2001ASPC..236..503J/abstract
https://github.com/arparaschiv/solar-coronal-inversion

CLEDB solar-coronal-inversion, Release update-readthedocs

SCOPE:

This is a simple bash script implementation that launches separate parallel processes for building Stokes IQUV
databases as part of the CLEDB_BUILD module. Two versions are provisioned:

1. rundb_1line.sh (For local interactive runs; can be utilized inside slurm interactive environments too.)

2. rundb_1line_slurm.sh (For batch and/or headless runs.)

INSTALL and USAGE:

• make sure the scripts are executable:

chmod u+x rundb_1line.sh
chmod u+x rundb_1line_slurm.sh

• (Only on OSX) Install gnu-sed (See notes below):

brew install gnu-sed

• (Optional if needed) OSX might have issues with running executables (“cannot execute binary file”). To fix try:

xattr -d com.apple.quarantine /path/to/file

• (Optional) for interactive jobs on RC systems, the correct modules may need to be preloaded in order for scripts
to execute.

module load slurm/blanca
module load gcc/10.2.0 (gcc is preloaded automatically in the␣

→˓batch version of the script.)

• run interactive jobs with (after starting the interactive node; see README_SLURM):

./rundb_1line.sh

• run batch/headless jobs with:

sbatch rundb_1line_slurm.sh

NOTES:

• The interactive rundb_1line.sh script requires two manual keyboard user inputs.

i. select how many CPU threads to use;

Hi
You have xx CPU threads available.
How many to use?

ii. which ion/line to compute. Each ion/line will create its own subfolder in the directory structure to store
computations.

48 Chapter 9. Thorough Readme Files

CLEDB solar-coronal-inversion, Release update-readthedocs

Please indicate the line to generate. Options are:
1: FE XIII 1074.7nm
2: FE XIII 1079.8nm
3: Si X 1430.1nm
4: Si IX 3934.3nm

• The batch rundb_1line_slurm.sh script has no keyboard inputs, but has manually defined variables that control
the ions to generate and system paths.

• Most directory and file pointers are dynamically linked to the CLEDB distribution directory. Local runs should
run without interference. Some directory/system containing variables are defined to be compatible with the
CURC system (scratch, project, etc. dirs). These may need to be updated for different systems.

• ** NEWLY COMPLETED RUNS WILL DELETE/OVERWRITE PREVIOUSLY COMPUTED CALCULA-
TIONS AND LOGS IN THE CORRESPONDENT SUBFOLDER**

• The scripts are configured to produce one line database outputs. All atomic data for the four ions of interest
along with the configuration files are available in the config directory. This setup selects the relevant inputs
automatically.

• Outside of the two batch scripts, the only user editable file is the config/DB.INPUT that configures the database
number of calculations (parameter resolution).

• Database output, header, and logs will be written in the correspondent ion sub-directory. Intermediary folders
and files will be deleted upon completion. The logs are dynamically written and calculation status can be checked
anytime with tail; e.g.

tail BASHJOB_0.LOG

• The ./rundb scripts will wait for all thread tasks to finish before exiting. Due to limitation in CPU process ID
(PID) tracking, the user is not notified in order of threads finalizing, but in the order they were scheduled. e.g.
if thread 2 finishes before thread 0, the user will find out only after thread 0 and thread 1 finish. A bug might
manifest if a new unrelated task is scheduled with the same PID as one of the runs, but this should not occur in
normal circumstances. If such a case occurs, a tail of the logs will verify that everything went well and scripts
can be exited manually.

• The number of Y-heights to calculate between the ymin and ymax ranges are not always a multiple of the number
of CPU threads. The scripts will efficiently scale the tasks on the available threads. If you request less tasks (via
DB.INPUT) than threads (via keyboard or sbatch), the script will not utilize all pre-allocated resources.

• The script heavily relies on the SED function. SED has different implementations on Linux (GNU) vs mac
(BSD) which makes commands not be directly correspondent. A function wrapper SEDI that disentangles GNU
vs BSD syntax is provided in the scripts. OSX users need to install a gnu implementation of sed (gnu-sed) for
the script to be portable between systems (via the gsed command).

brew install gnu-sed

• The script cuts and appends midline on the DB.INPUT file, to set the ymin and ymax ranges for each CPU thread.
The number of decimals for all variables and 3 spaces in between them need to be kept in the configuration file
in order to not introduce bugs.

• Executables (dbxxx) need to be build (from CLE) on the current architecture: ELF(linux) or Mach-O(OSX) If
non-correct executables are called a “cannot execute binary file” error is produced. Architecture can be checked
with the file command. The configuration deduces the OS in use and selects and uses the proper dbxxx executable
in each case, where both Darwin and LINUX executables exist. The linux executable has a CURC cross compiled
executable compiled with gcc/10.2.0 for use in RC systems.

9.2. README-RUNDB 49

CLEDB solar-coronal-inversion, Release update-readthedocs

9.3 README-SLURM

9.3.1 CLEDB Research Computing Runs

Contact: arparaschiv “at” ucar.edu; paraschiv.alinrazvan+cledb “at” gmail.com

SLURM ENABLED RESEARCH COMPUTING INTERACTIVE OR HEADLESS RUNS

Detailed instructions for setting up and running the CLEDB inversion distribution on research computing (RC) systems.

1. Slurm enabled test scripts

• test_cledb_slurm.sh

• test_1line.py

• test_2line.py

Note: the test_1line.py and test_2line.py scripts are plain script versions of the test notebooks. These are directly
exported from the Jupyter .ipynb notebooks. All changes to the notebooks should be exported to the scripts.

2. Installation and run instructions for RC systems

These instructions are following the CURC system guidelines and scripts are provisioned to be compatible with the
blanca-nso compute nodes.

• Activate the slurm/blanca module with:

module load slurm/blanca

2.a Interactive runs

• Start an interactive job:

sinteractive --partition=blanca-nso --time=01:00:00 --ntasks=2 --nodes=1 --m=12gb

• Install CLEBD via git clone in the /projects/$USER/ directory following the instructions in README-
codedoc.PDF.

• Create or update a .condarc file with the following contents so that anaconda environments and packages install
to your /projects/𝑈𝑆𝐸𝑅/𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦𝑖𝑛𝑠𝑡𝑒𝑎𝑑𝑜𝑓/ℎ𝑜𝑚𝑒/USER/ directory due to lack of storage space.

pkgs_dirs:
- /projects/$USER/.conda_pkgs
envs_dirs:
- /projects/$USER/software/anaconda/envs

• Anaconda install/enable. This step needs to be run at each sinteractive login to enable Anaconda.

source /curc/sw/anaconda3/latest

50 Chapter 9. Thorough Readme Files

https://github.com/arparaschiv/solar-coronal-inversion
https://curc.readthedocs.io/en/latest/index.html

CLEDB solar-coronal-inversion, Release update-readthedocs

• Install the CLEDBenv anaconda environment using the CLEDBenv.yml file. Detailed instructions in README-
codedoc.PDF. Note: Install inside the sinteractive run or a compile node following the CURC guidelines. Don’t
perform the installation from the login node.

• Activate your new environment

conda activate CLEDBenv

• Generate a database:

module load gcc/10.2.0
./CLEDB_BUILD/rundb_1line.sh

• Note: A Fortran executable cross compiled on the CURC system with gcc/10.2.0 is provided and will be automat-
ically used by the script. If libraries are missing, and runs are not executing, please contact us for the CLE source
code distribution. The most current CLE distribution is not yet publicly hosted, but available upon request.

• Update the database save location in the ctrlparams.py class, and then run any of the three .py test scripts.

python3 test_1line.py
python3 test_2line.py

• Everything should work (remember to download the test data to the main CLEDB root dir) with the exception
of remotely connecting to a Jupyter notebook server spawned inside an sinteractive session (which on CURC
refuses to connect). CURC offers dedicated Jupyter notebook/lab compute nodes, but beware of how the low
resource allocation (usually 1 thread) might interact negatively with the Numba/JIT parallel enabled functions.

2.b Batch/headless runs

• The database generating scripts in CLEDB_BUILD directory have a dedicated headless run
script rundb_1line_slurm.sh which has slurm headers and where all user inputs are disabled.
RC resources are requested via the sbatch commands in the script header. The ion to gen-
erate the database along with some path variables need to be manually edited in the script
before running. This version of the database generation script will perform disk I/O on
𝑆𝐶𝑅𝐴𝑇𝐶𝐻𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠, 𝑎𝑛𝑑𝑛𝑜𝑡𝑜𝑛𝑙𝑜𝑐𝑎𝑙𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑖𝑒𝑠.𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑠𝑤𝑖𝑙𝑙𝑏𝑒𝑚𝑜𝑣𝑒𝑑𝑏𝑎𝑐𝑘𝑡𝑜𝑡ℎ𝑒/𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠/USER/
directories after computations are finished.

• Call it using sbatch after editing for the ion and paths to generate for each ion (multiple sbatch commands can be
run concurrently if resources are available):

sbatch rundb_1line_slurm.sh

• The bash test_cledb_slurm.sh wrapper script is a starting point for running test/production headless runs via the
sbatch command. It provisionally calls one of the two above mentioned .py scripts based on a decision tree.

• The script is to be updated/finalized when production runs are ready and data and header ingestion procedures
are known.

9.3. README-SLURM 51

https://curc.readthedocs.io/en/latest/gateways/jupyterhub.html

CLEDB solar-coronal-inversion, Release update-readthedocs

52 Chapter 9. Thorough Readme Files

CHAPTER

TEN

LIST OF CHANGES AND TODO TASKS

Warning: The changelog is dinamically linked to the standalone markdown files. A documentation rebuild will
capture changes in any of these files.

10.1 CLEDB UPDATES and TODO list

Github update history

53

https://github.com/arparaschiv/solar-coronal-inversion

CLEDB solar-coronal-inversion, Release update-readthedocs

Com-
mit
Tag

Date Description

ini-
tial

20210802Self explanatory.

update-
slurm

20210828- Implemented initial slurm-enabled and batch versions for both jupyter and database build scripts. -
Updated and extended documentation.

update-
numbaproc

20210906- Implemented a parallel enable/disable keyword for numba enhanced functions. - Functions that don’t
benefit from parallel splitting are hard-coded to parallel=False.

update-
tidbits

20210908- Small updates for optional plotting; save/load datacubes, etc. - Implemented slurm tidbits; standard
scripts can now be run inside interactive sessions on RC systems. - Revised how calculations are
computed in the CLEDB_BLOS module. - Updated constants and ctrlparams classes.

update-
CLEDB_BUILD

20210915- Updated database building scripts. - Fully implemented the batch run version with $scratch partition
use. - Updated documentation accordingly.

update-
databugfixes

20220816- Bug fixes update after running comp inversions. - Fixed bugs in obs_qurotate (PREPINV mod-
ule) and cledb_quderotate (PROC module). - Fixed the cledb_obsderotate (PROC module) function.
- Added angle correction (azimuth derotate) to bphi calculation in cledb_phys (PROC module). -
cledb_getsubset routine (PROC module) is optimized and re-written. - Introduced the “integrated”
control parameter. - Updated the conda distribuition and python 3.10, numpy, numba, etc. - Bugfix
update to CLE 2.0.3 executables in BUILD module.

update-
readthedocs

20230205- Transfered the code documentation from a latex based distribution to a Sphinx webpage format. - The
level of detail is increased when compared to the previous latex builds. - The source along with a static
PDF are included in the current code distribution. - The html build is hosted on cledb.readthedocs.io.

update-
iqud

20230223Major update. - CLE is updated to 2.0.4. A number of issues with the forward-synthesis are re-
solved as outlined in the CLE README. - CLE incurred a small fix to height and depth calculations.
Databases need to be recomputed with CLE >= 2.0.4 - Small bugfix updates to the task scheduling
scripts in BUILD. - The database compression routine sdb_dcompress introduced numerical insta-
bility at particular field geometries. It is now disabled. - Databases are now uncompressed and of
np.float32 type. Consequentially, double precision in related functions is changed to single float. -
The PREPINV obs_integrate routine is rewritten to improve execution time. Noise statistics and ob-
servation rms are enabled. - The PROC functions “cledb_invproc”, cledb_matchiquv, cledb_partsort,
cledb_getsubset, blos_proc, spectro_proc, cdf_statistics are updated for fixing bugs and mitigating
numerical warnings/issues. - Partially implemented the IQUD (IQU+Doppler) functionality to in-
vert vector fields in the absence of Stokes V. - Introduced the additional ctrlparams “iqud” keyword
that works alongside the “integrated” control parameter. - Updated functions in the PROC module
to enable IQUD setup matches. New functions cledb_matchiqud and cledb_getsubsetiqud are added.
The original subset funcrtion is renamed to cledb_getsubsetiquv. - Keyword ingestion partially imple-
mented. A new obs_headstructproc function is added to PREPINV. Additional keys have been added
to ctrlparams to support keyword ingestion. - PREPINV module can now recognize CoMP/uCoMP
keywords at input. - A new CoMP test example is now available. The test script for Stokes two-line
matching had been updated. - Numba activate/deactivate and caching enabled/disabled keywords are
implemented in the ctrlparams class. - Updated the numba, numpy, and scipy package versions under
the currently stable Python 3.10 conda env. - Numba optimization/improvement of several functions
(obs_integrate, cdf_statistics, cledb_matchiquv, cledb_matchiqud, cledb_partsort, cledb_getsubset).
- Updated the documentation to describe the functions, parameters and variables related to the IQUD
and line-integrated observations.

TODO list last update: 20230106

1. Add the ISSUEMASK setup as outlined in the documentation.

2. Needed observation keywords are currently manually implemented, where a synthetic CLE observation is used.
Information from observation keywords will need to be ingested after observations will become available.
update-iqud: Keywords are now ingested with data.

54 Chapter 10. List of changes and TODO tasks

https://cledb.readthedocs.io/en/latest/changelog.html

CLEDB solar-coronal-inversion, Release update-readthedocs

3. Develop and use a public test case for more convoluted MURAM data.

4. Implement additional numba compiler flags and options. Make numba active/disabled with a ctrlparam. Imple-
ment numba caching.update-iqud

5. After more information on input data is obtained, implement the LEV2CALIB_WAVE and
LEV2CALIB_ABSINT functions as outlined in the documentation.update-iqud: DKIST lev-1 data will
contain the needed corrections.

6. Implement ML_LOSDISENTANGLE to separate multiple LOS contributions in observations, as outlined in the
documentation.

7. Implement a noise uncertainty quantification method (RMS computations and relevance against signal).update-
iqud

8. Introduce the option to invert using PyCELp built databases.

10.1. CLEDB UPDATES and TODO list 55

CLEDB solar-coronal-inversion, Release update-readthedocs

56 Chapter 10. List of changes and TODO tasks

CHAPTER

ELEVEN

GLOSSARY

Azimuth
Usually reffering to angles traversing the plane of the sky. These are 𝜗 or Φ𝐵 depending on geometrical refer-
ences.

ADU
Arbitrary Data Units; detector calibrated counts when no absolute intensity calibration exists.

Analytical solutions
Frame an inverse problem in a well-understood and reasonably posed mathematical form and approximates a
solution.

CDF
Cumulative Distribution Function. Statistical method for interpreting normal distributions.

CLE
Coronal Line Emission FORTRAN spectral synthesis code. It is hosted on Github.

CLEDB
Coronal Line Emission DataBase Inversion PYTHON algorithm that matches spectropolarimetric observations
with CLE generated databases.

CHIANTI
atomic database for spectroscopic diagnostics of astrophysical plasmas. See the documentation.

𝜒2 fitting solution
Statistical hypothesis to determine whether a variable is likely to come from a specified distribution. The 𝜒2

residual is used to find the closest match to a discrete distribution point.

Degeneracy
When performing an inversion, the degrees of freedom of the problem might not allow to recover an exact mathe-
matical solution. Sets of equivalent solutions inside an inversion metric are called degenerate. e.g., disentangling
an angle value knowing that sin a = 1

2 , a is degenerate to either 𝜋
6 or 5𝜋

6 .

FWHM
Full Width at Half Maximum. Measurement of a standard width of a normal distribution.

Glob
This is a Python library to process and manipulate os pathnames.

Header
Sets of input metadata that accompanies an observation datafile.

Inversion
Mathematical process that starts from the output of a physical process and backtraces to recover one or more
input variables. In our particular case, we start from output Stokes IQUV profiles and attempt at recovering
coronal magnetic fields responsible for producing said profiles.

57

https://github.com/arparaschiv/coronal-line-emission
https://www.chiantidatabase.org/
https://docs.python.org/3/library/glob.html

CLEDB solar-coronal-inversion, Release update-readthedocs

JIT
Just In Time compilation decorator from the Numba library package.

LOS
Line Of Sight. In CLE references this direction is along the x-axis. The CLE 𝜙 angle traverses this direction. In
the observer geometry, the Θ𝐵 angle traverses this direction.

Normal distribution
A Gaussian function, or a bell curve. Probability distribution that is symmetric around a mean value, in which
data near the mean are more frequent in occurrence than data far from the mean.

Numba
An open source JIT compiler that translates a subset of Python and NumPy code into fast machine code. Serial
task parallelization and loop-lifting is also available. See documentation.

Numpy
Open source library for fast numeric operations.

Physical parameters
A set of observable parameters like density, magnetic field strength, magnetic geometry components, tempera-
ture, 3D coordinate position, etc.

Physical units
Definition of measurement that is calibrated to physically etalonated constants; e.g. intensity in [erg cm−2 s−1

nm−1 sr−1]

Pixel
A 2D representation for a signal integrating area. This is equivalent to a LOS integration of a voxel. This is also
the fundamental storage datatype for Python/Numpy arrays. In this document we refer to pixels when discussing
data/array elements.

POS
Plane Of Sky. In CLE references this direction is correspondent to the zy-plane. The CLE 𝜗 angle traverses this
direction. In the observer geometry, the Φ𝐵 angle traverses this direction.

Radiative transfer
Transfer of electromagnetic radiation through a medium.

RMS
Root Mean Square. The square root of the arithmetic mean of the squares in a set of discrete realizations.

Slurm
A computation worload manager used predominantly by research computing clusters.

Spectroscopic data
Electromagnetic radiation flux spread in individual bins inside an electromagnetic spectral range.

Spectroscopic emission line
Excess flux exceeding background counts at determined spectral positions, occurring when the electrons of an
excited atom or molecule move between energy levels.

Stokes IQUV
A set of values or spectra that describe the polarization state of electromagnetic radiation.

Stokes I
Total intensity of spectroscopic line emission.

Stokes Q and U
Linear polarization components of spectroscopic line emission.

Stokes V
Circular polarization component of spectroscopic line emission.

58 Chapter 11. Glossary

https://numba.readthedocs.io/en/stable/reference/jit-compilation.html
https://numba.pydata.org/
https://numba.readthedocs.io/en/stable/index.html
https://numpy.org/
https://slurm.schedmd.com/documentation.html

CLEDB solar-coronal-inversion, Release update-readthedocs

Voxel
A generalized concept of a pixel. In our case, by voxel we envision 2D projection of a volume inside a square
area that contains information about the integral emission along the line of sight. Voxel is used in this document
instead of pixel when refering to the physical counts recorded inside a spatial integration area of the size of a
pixel.

59

CLEDB solar-coronal-inversion, Release update-readthedocs

60 Chapter 11. Glossary

INDEX

Symbols
\chi^2 fitting solution, 57

A
ADU, 57
Analytical solutions, 57
Azimuth, 57

C
CDF, 57
CHIANTI, 57
CLE, 57
CLEDB, 57

D
Degeneracy, 57

F
FWHM, 57

G
Glob, 57

H
Header, 57

I
Inversion, 57

J
JIT, 58

L
LOS, 58

N
Normal distribution, 58
Numba, 58
Numpy, 58

P
Physical parameters, 58
Physical units, 58
Pixel, 58
POS, 58

R
Radiative transfer, 58
RMS, 58

S
Slurm, 58
Spectroscopic data, 58
Spectroscopic emission line, 58
Stokes I, 58
Stokes IQUV, 58
Stokes Q and U, 58
Stokes V, 58

V
Voxel, 59

61

	Synopsis and Motivation
	Synopsis
	Motivation for the CLEDB approach
	List of Relevant Publications

	Module Overview
	Algorithm Flowchart Definitions
	The CLEDB Modules
	The Python Modules

	Installation and Run Instructions
	Code Distribution Download
	A CLEDBenv Python Environment
	Basic Run Example
	Headless Slurm Runs Overview
	Example Test Data

	Input Variables and Parameters
	Input Data and Metadata
	Ctrl. Parameters ctrlparams.py Class
	General Parameters
	PREPINV Parameters
	PROC Parameters
	Numba Jit Parameters

	Constants constants.py Class
	Physical Constants
	Ion Specific Constants

	CLEDB_BUILD - Database Generation
	CLEDB_BUILD Configuration
	DB.INPUT Parameters

	The CLEDB_BUILD Job Script
	CLEDB_BUILD Output

	CLEDB_PREPINV - Pre-processing
	CLEDB_PREPINV Module Functions
	CLEDB_PREPINV Main Variables

	CLEDB_PROC - Analysis and Inversion
	The SPECTRO_PROC Function
	SPECTRO_PROC Main Functions
	SPECTRO_PROC Main Variables

	The BLOS_PROC Function
	BLOS_PROC Main Functions
	BLOS_PROC Main Variables

	The CLEDB_INVPROC Function
	CLEDB_INVPROC Main Functions
	CLEDB_INVPROC Main Variables

	Output Products
	Output Variable Overview
	Tentative Issuemask Implementation

	Thorough Readme Files
	MAIN README
	CLEDB Coronal Magnetic Field Database Inversion
	Repository for CLEDB - the Coronal Line Emission DataBase inversion distribution.
	Main aim:
	Applications:

	Documentation
	System platform compatibility
	Examples
	Works that fundament and support the CLEDB inversion

	README-RUNDB
	CLEDB Parallel Database Generator
	History for BUILD module:
	SCOPE:
	INSTALL and USAGE:
	NOTES:

	README-SLURM
	CLEDB Research Computing Runs
	SLURM ENABLED RESEARCH COMPUTING INTERACTIVE OR HEADLESS RUNS
	1. Slurm enabled test scripts
	2. Installation and run instructions for RC systems
	2.a Interactive runs
	2.b Batch/headless runs

	List of changes and TODO tasks
	CLEDB UPDATES and TODO list

	Glossary
	Index

