

Documentation for the CLEDB Distribution

[image: CLEDB repository]
 [https://github.com/arparaschiv/solar-coronal-inversion]

Purpose:

The Coronal Line Emission DataBase inversion is a public Python based tool and pipeline that is used to infer magnetic field information from SpectroPolariemtric observations of the Solar Corona.
This document describes the main concepts, functions, and variables, comprising the CLEDB inversion algorithm for inverted coronal magnetic fields.

Authors and Contact:

Alin Paraschiv and Philip Judge

– High Altitude Observatory NCAR|UCAR

– National Solar Observatory, AURA

arparaschiv at ucar edu or paraschiv.alinrazvan+cledb at gmail

Caution

Vector coronal magnetometry is not yet advanced enough as to recover HMI-like magnetograms.
A user should not expect such a product yet.
Solution degeneracies exist, and the user
is required to make a decision on how to interpret the inversion outputs and
which products to utilize for their science.

Danger

This setup should be considered at best a beta-level release.
This setup tackles a problem for which currently no complete observation data exists and where
a complex forward-model + inversion is required.
Bugs or unintentional bad outcomes will still exist at this point in time.
Please get in touch with us about any “feature” you discover.

Note

Last updated at the *update-readthedocs* commit tag.

Contents:

	Synopsis and Motivation
	Synopsis

	Motivation for the CLEDB approach

	List of Relevant Publications

	Module Overview
	Algorithm Flowchart Definitions

	The CLEDB Modules

	The Python Modules

	Installation and Run Instructions
	Code Distribution Download

	A CLEDBenv Python Environment

	Basic Run Example

	Headless Slurm Runs Overview

	Example Test Data

	Input Variables and Parameters
	Input Data and Metadata

	Ctrl. Parameters ctrlparams.py Class
	General Parameters

	PREPINV Parameters

	PROC Parameters

	Numba Jit Parameters

	Constants constants.py Class
	Physical Constants

	Ion Specific Constants

	CLEDB_BUILD - Database Generation
	CLEDB_BUILD Configuration
	DB.INPUT Parameters

	The CLEDB_BUILD Job Script

	CLEDB_BUILD Output

	CLEDB_PREPINV - Pre-processing
	CLEDB_PREPINV Module Functions

	CLEDB_PREPINV Main Variables

	CLEDB_PROC - Analysis and Inversion
	The SPECTRO_PROC Function
	SPECTRO_PROC Main Functions

	SPECTRO_PROC Main Variables

	The BLOS_PROC Function
	BLOS_PROC Main Functions

	BLOS_PROC Main Variables

	The CLEDB_INVPROC Function
	CLEDB_INVPROC Main Functions

	CLEDB_INVPROC Main Variables

	Output Products
	Output Variable Overview

	Tentative Issuemask Implementation

	Thorough Readme Files
	MAIN README
	CLEDB Coronal Magnetic Field Database Inversion

	README-RUNDB
	CLEDB Parallel Database Generator

	README-SLURM
	CLEDB Research Computing Runs

	List of changes and TODO tasks
	CLEDB UPDATES and TODO list

	Glossary

Synopsis and Motivation

Synopsis

CLEDB aims to invert coronal magnetic field information from observations of polarized light. The algorithm takes arrays of one or two sets of SpectroPolarimetric Stokes IQUV observations sobs_in along with their header metadata information. The data and metadata are pre-processed, and optimal corresponding sets of databases resulting from forward calculations are selected and read from disk storage.

The data processing is split into two branches, based on the available polarized coronal Stokes observations:

	1-line branch: 4 input IQUV observations (one coronal emission line).

	2-line branch: 8 input I1Q1U1V1I2Q2U2V2 observations (two coronal emission lines).

or

	2-line branch: 6 input I1Q1U1I2Q2U2 observations (two coronal emission lines without Stokes V).

Spectroscopic analysis products are computed for each line for both 1-line or 2-line branches that include a spectral dimension.

The 1-line branch employs analytical approximations to calculate line of sight (LOS) integrated magnetic field products, while the 2-line branch offers access to additional magnetic field products. The 2-line setup benefits from more degrees of freedom allowing us to break degeneracies intrinsic in the inversion. Thus, the 2-line algorithm branch performs a \({\chi}^2\) fitting between the observation and a forward-modeled database to recover full 3D vector magnetic field components. The 8 component IQUV fit will result in sets of two times degenerate solutions, while the 6 component IQUD fit will recover two sets of sets (4 total) degenerate solutions. The IQUD setup needs access to additional information recovered from Doppler oscillation analysis in order to constrain the solution.

The databases are generated via forward modeling of combinations of input magnetic field and geometric parameters. In this setup, databases are used as a static input with respect to the inversion scheme and should not be computed dynamically for each observation.

Motivation for the CLEDB approach

By utilizing 2-line observations, we can recover the 3D magnetic field information for single point voxel using a \({\chi}^2\) fitting approach. Theoretically, we can employ the CLE (Coronal Line Emission) spectral synthesis code to generate forward-model calculations. About 107-109 atomic plasma and magnetic configurations are needed in order to satisfy a reasonable solution resolution criteria. Directly forward modeling such solutions for one pixel/voxel in a dynamic fashion would be time consuming. Such a calculation has execution times in the order of 5-10 hours, on a single CPU thread when using a fast implementation of the Fortran CLE code.

Building a static database (via the CLEDB_BUILD module of our algorithm) to store the vast set of synthetic Stokes observations, along with the input plasma and magnetic field configurations responsible for producing polarized emission, proved to be a significantly more feasible approach.

Additionally, the database theoretical calculations gain intrinsic access to otherwise un-observable input parameters (e.g. atomic alignment \({\sigma}_0^2\), intrinsic magnetic field angles \({\vartheta}\), \({\varphi}\) etc.) that can be used to break inherent degeneracies encountered when attempting analytical inversions (as for example occurring in the 1-line branch implementation). The dimensionality of the problem at hand can be further reduced by 1-2 orders of magnitude by using native symmetries when building and querying databases. Detailed discussions on the physics aspects of dimensionality reduction and degeneracy breaking effects can be found in the sources below.

List of Relevant Publications

Academic journal papers that helped fundament, build and justify CLEDB:

	Paraschiv & Judge, SolPhys, 2022 [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract] covered the scientific justification of the algorithm, and the setup of the CLEDB inversion.

	Judge, Casini, & Paraschiv, ApJ, 2021 [https://ui.adsabs.harvard.edu/abs/2021ApJ...912...18J/abstract] discussed the importance of scattering geometry when solving for coronal magnetic fields.

	Ali, Paraschiv, Reardon, & Judge, ApJ, 2022 [https://ui.adsabs.harvard.edu/abs/2022ApJ...932...22A/abstract] performed a spectroscopic exploration of the infrared regions of the emission lines available for inversion with CLEDB.

	Dima & Schad, ApJ, 2020 [https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract] discussed potential degeneracies in using certain line combinations. The one-line CLEDB inversion directly utilizes the methods and results described in this work.

	Schiffmann, Brage, Judge, Paraschiv & Wang, ApJ, 2021 [https://ui.adsabs.harvard.edu/abs/2021ApJ...923..186S/abstract] performed large-scale Lande g factor calculations for our ions of interest and discusses degeneracies in context of their results.

	Casini & Judge, ApJ, 1999 [https://ui.adsabs.harvard.edu/abs/1999ApJ...522..524C/abstract] and Judge & Casini, ASP proc., 2001 [https://ui.adsabs.harvard.edu/abs/2001ASPC..236..503J/abstract] described the theoretical line formation process implemented by CLE, the coronal forward synthesis Fortran code that is currently utilized by CLEDB.

Module Overview

Algorithm Flowchart Definitions

We illustrate our definitions for the flowcharts presented throughout this document that describe the principal algorithm operations. We note that the flowcharts are not exhaustive and are not meant to describe the code to the level of individual operations. The flowcharts list the main variables and functions used along with how they are processed by the different modules and intrinsic functions, and the resulting outputs.

[image: _images/shape_defs.png]

The CLEDB Modules

The CLEDB inversion algorithm can be split into three parts:

	The CLEDB_BUILD module contains pre-configured scripts for generating a database used downstream to fit the observations. Fortran binaries and Bash scripting is used by this module. Running the default configured rundb_1line.sh script for each line of your observation is enough in most cases. Please see the dedicated README-RUNDB for more detailed instructions.

	The CLEDB_PREPINV module prepares the data for analysis and matches required databases to read into memory (for the 2-line branch). Two main functions SOBS_PREPROCESS and SDB_PREPROCESS match and prepare the data and databases for analysis. The ctrlparams and constants classes are imported separately and fed to the module.

	The CLEDB_PROC module encompasses the main data analysis functions SPECTRO_PROC, BLOS_PROC, and/or CLEDB_INVPROC. These apply analytical solutions or database inversion schemes on the input observational data to recover the desired plasma and magnetic field parameters (e.g. the OUTPUTS).

Hint

The MAIN README contains instructions on how to end-to-end run the provided examples.

[image: _images/1_CLEDB_OVERVIEW.png]
The flowchart schematic presents the modules along with the main inputs and outputs. Each module is described separately in the following sections along with detailed operation flowcharts. The most important variables and functions are described for each inversion module component. The definitions and accompanying diagrams are not meant to be 1:1 mirrors of the coding, but merely to trace the most crucial operations and resulting outputs. Common terminology is defined in the last section.

Note

Additional extended comments on specific code blocks and function inner-workings can be found in each module’s Python/Bash scripts.

The Python Modules

The following Python packages are required. For numerical computation efficiency, the inversion heavily relies on the Numpy and Numba packages.

	
	Numpy
	Numpy provides fast vectorized operations on its self implemented-ndarray datatypes. All Python based modules are written in a Numpy-centric way. Functional equivalent pure Python coding is avoided when possible due significantly slower runtimes. Numpy version specific (1.23) documentation is found here. [https://numpy.org/doc/1.23/]

	
	Numba
	Numba implements just in time (JIT) compilation decorators and attempts where possible to perform loop-lifting and scale serial tasks on available CPU threads. Numba has two modes of operation, object-mode and non-python mode. Non-python mode is the desired target. It will maximize optimization and runtime speed, but is significantly limited in terms of Python and/or Numpy function compatibility. Object-mode has full Python compatibility but the applicable optimizations are significantly less effective in most situations [https://numba.readthedocs.io/en/stable/user/performance-tips.html#no-python-mode-vs-object-mode].

A Numba fully-enabled implementation can utilize only a small subset of Python and Numpy functions. Significant data sanitation and statically defined function I/O are required in order to enable runtime optimization and parallelization. Due to these sacrifices, coding implementations are not always clear and straightforward.

Danger

Numba non-python mode is not directly equivalent to parallel/loop-lifted runs. A decision on running a specific function in parallel needs manual consideration. Loop-lifting “all” non-python functions leads to significant worsening of execution efficiency. We use a control parameter described later-on to control the use of loop-lifting/parallelization, but only on functions that would benefit from the effect. A significant number of non-python compatible functions have implicit parallelization set to disabled for good reason.

Extensive documentation and examples can be found in the Numba documentation. The version specific (0.56.4) documentation is available here. [https://numba.readthedocs.io/en/0.53.1/]

Attention

The CLEDB_PREPINV module can only be compiled in Numba object-mode due to disk I/O operations that are not implemented in non-python mode. Object-mode is usually not faster than normal Python, but it does benefit from loop-lifting parallelization, that is beneficial to our usecase.

	
	pyyaml
	YAML format library utilized in the ctrlparams class to enable or disable Numba global options.

	
	Scipy
	Used for spectroscopic fitting and statistics.

	
	Jupyter, Jupyterlab, Matplotlib and Ipympl
	Optional libraries for data visualization, plotting, widgets, etc.

	
	Glob, and OS
	Additional modules used primarily by CLEDB_PREPINV for disk I/O operations.

	
	Time and Sys
	Used during debug runs with high level of verbosity.

	
	Sphinx, Sphinx-rtd-theme and Myst-parser
	Libraries for building documentation and processing markdown files. Disabled by default as these are not required for running the inversion.

Installation and Run Instructions

Code Distribution Download

The CLEDB coronal field inversion code distribution is publicly hosted on Github:

https://github.com/arparaschiv/solar-coronal-inversion

To create a local deployment use the git clone function:

git clone https://github.com/arparaschiv/solar-coronal-inversion

CLEDB_BUILD uses CLE precompiled GNU compatible Fortran binary executable files to generate databases. The module is run by utilizing a Bash script that enables parallel runs of serial computations. Binaries for both Darwin and Linux architectures are provided. More details are found in the CLEDB_BUILD - Database Generation module.

Note

The CLE FORTRAN source code is not included in this package. It is hosted in a separate repository https://github.com/arparaschiv/coronal-line-emission.

A CLEDBenv Python Environment

The CLEDB_PREPINV and CLEDB_PROC modules of CLEDB are written in Python.
The Anaconda environment system is utilized. Anaconda documentation and installation instructions can be found here [https://docs.continuum.io/anaconda/install/].

We provide a configuration file CLEDBenv.yml to create a custom Anaconda environment that groups the CLEDB utilized Python modules briefly described above.

name: CLEDBenv
channels:
 - defaults
 - numba
 - conda-forge
dependencies:
 - python=3.10
 - numpy=1.23
 - numba=0.56
 - pyyaml ## used only in ctrlparams for NUMBA global options
 - scipy=1.9
 - ipython=8.6
 - ipympl
 - jupyter
 - jupyterlab
 - matplotlib
- sphinx=5.0.2 ## Not required by CLEDB; used only to build the documentation## fixed version also stated in docs/requirements.txt
- myst-parser=0.18.1 ## Not required by CLEDB; used to add markdown parsing to documentation building.
- sphinx-rtd-theme=1.1.1 ## Not required by CLEDB; theme for the documentation

The configuration file is used to configure the required and optional CLEDB Python packages. In a terminal session you can create the environment via:

conda env create -f CLEDBenv.yml

After installing all packages the environment can be activated via

conda activate CLEDBenv

The user can return to the standard Python package base by running

conda deactivate

If dependency problems arise for any reason, CLEDBenv can be deleted and recreated with the default fixed-version packages from CLEDBenv.yml.

conda remove --name CLEDBenv --all

Danger

The CLEDBenv anaconda environment installs specific version packages. Cross-compatibility is verified by us. This feature ensures additional codebase stability. Updating the individual Python packages inside the CLEDBenv environment is not recommended and might break code functionality.

Basic Run Example

	Databases can be built with:

./CLEDB_BUILD/rundb_1line.sh

See detailed database build instructions via the dedicated README-RUNDB found in the CLEDB_BUILD directory.

	Two examples of running the full inversion package (assuming databases are already built) are provided as Jupyter notebooks and/or lab sessions.

./jupyter-lab test_1line.ipynb
./jupyter-lab test_2line.ipynb

Attention

Script versions for test_1line and test_2line are also available. These are tailored to be used in headless runs.

Headless Slurm Runs Overview

A few optimizations and modifications are provided in order to ensure a straightforward run of CLEDB on headless systems like research computing clusters. The Slurm environment [https://slurm.schedmd.com/documentation.html] is utilized.

Namely:

	Instructions for resource allocation, installing, and running the inversion in both interactive and batch modes of Slurm research computing setups are provided.

	The database building bash script has a dedicated headless version, rundb_1line_slurm.sh, where user options are hard-coded.

	Pure python test scripts (test_*.py) are exported/generated from the Jupyter notebooks (test_*.ipynb) to be compatible with batch allocations.

A dedicated readme covering this topic can be consulted here or as standalone in the main CLEDB directory. The instructions are provided following the templates set by the Colorado University Research Computing User Guide [https://curc.readthedocs.io/en/latest/index.html].

Example Test Data

A number of examples are included to help a user get started with inverting magnetic fields. The test jupyter or python scripts will load different datafiles corresponding to one selected test case.
Some cases are not yet fully implemented or available. The available datafiles can be donwloaded from the links below, or by following the Readme.md instructions. The Readme.md file also contains a method for downloading the data using only the terminal for headless systems.

Hint

A DKIST Cryo-NIRSP example will be included once such data becomes available to the community.

	
	IQUV test example 1.a
	Full Stokes IQUV data.
A CLE <https://github.com/arparaschiv/coronal-line-emission> computed forward-synthesis of Fe XIII 1074 and 1079 nm lines using a dipole generator program (See CLE dipolv.f).
Three independent magnetic dipoles are generated at different positions along the LOS. These outputs are combined into a single LOS projected observation.

[image: _images/STOKES_out.png]
The 1.a data can be downloaded from gdrive [https://drive.google.com/file/d/1beyDfZbm6epMne92bqlKXcgPjYI2oGRR/view?usp=sharing].

	
	IQUV test example 1.b
	Full Stokes IQUV data.
A CLE [https://github.com/arparaschiv/coronal-line-emission] computed forward-synthesis of Fe XIII 1074 and 1079 nm lines using a current sheet generator program (See CLE sheet.f).
Five simple independent magnetic structures are generated along the LOS to test the algorithm’s matching for LOS positions.

[image: _images/los23.png]

Attention

Two structures are confounded with respect to the LOS leading the inversion to give eroneous results for these locations. This is expected. See Paraschiv & Judge, SolPhys, 2022 [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract].

This testcase will be included soon in the example list.

	
	IQUV test example 1.c
	Full Stokes IQUV data.
A MURAM simulation of a dipolar structure at the POS. Fe XIII forward-synthesis via PyCELp [https://github.com/tschad/pycelp].
This is a large datafile that is used only for internal testing and can’t be shared with the community.

Note

For all above examples, a user should expect solutions that are degenerate in pairs of two with respect to the LOS position. These need to be properly disambiguated for each observation. A human analysis and decision is required.

	
	IQUD test example 1.d
	Stokes IQU data. No Stokes V.
This is an example that unpickles a real observation from CoMP logged on March 27 2012. CoMP is not capable of routinely measuring Stokes V.
Multiple real-life coronal structures are observed. Because Stokes V is not measured, we do not get access to a analytical solution via the BLOS_PROC module.

[image: _images/comp_iqu.png]
The 1.d data can be downloaded from gdrive [https://drive.google.com/file/d/1AdAqIvsiXEV6RK5UiGWcu-1bovs0oOGr/view?usp=sharing].

	
	Test data 1.e - Doppler oscillation analysis results for data in 1.d
	This is the additional data that needs to be brought in for obtaining a vector magnetic solution for the CoMP observation offered as part of the 1.d example.
The two utilized dimensions are sobs_dopp[:,:,0] and sobs_dopp[:,:,1] representing respectively the magnetic field strength and the wave angle derived from the Doppler oscillation analysis. The two other dimensions represent POS projections of the magnetic field, but are not currently utilized.
The test_2line scripts will just create an empty array when a full Stokes IQUV inversion is requested as in the 1.a - 1.c examples.

The 1.e data can be downloaded from gdrive [https://drive.google.com/file/d/1-hPiRRYRS6de_0zWz1k2UU1rIKOEbPOu/view?usp=sharing].

Note

For the two datafiles corresponding to the IQUD example, a user should expect solutions that are degenerate in pairs of four with respect to the LOS position and the magnetic polarity. Currently a more degenerate solution is retrieved when compared with the full Stokes IQUV inversions. Solutions to further disambiguate IQUD results are currently being trialed. Noteworthy is the fact that the two degeneracies (LOS position and magnetic polarity) are independent with respect to how the problem is posed. Thus, a selection of solutions should not be made as x in set [0,1,2,3] but as x in [1,4] or [2,3] solution subsets for an observed pixel. As mentioned above, these solutions need to be properly disambiguated for each observation. A human analysis and decision is required.

Hint

A mapping of the magnetic field strength can be obtained from any of the IQUV test 1.a - 1.c cases. These alongside a calculation of the linear polarization azimuth can be fed as a sobs_dopp observation in a IQUD inversion scheme applied to the same test data. (CLEDB will ignore the Stokes V information in this case). A set of four degenerate solutions will be obtained. One subset of two solutions will be geometrically identical to the full IQUV inversion output.

Input Variables and Parameters

Input Data and Metadata

	header *keys
	Set of input header metadata information that should describe the sobs_in variable. Expected keywords with simplified naming are detailed in this section. Detailed keyword information can be found for DKIST observations in the SPEC_0214 documentation [https://docs.dkist.nso.edu/projects/data-products/en/stable/specs/spec-214.html].

*keys to crpixn [] int
Reference pixel along x y or w (wavelength) direction.

*keys to crvaln [] float
Coordinate value at crpix along x y or w (wavelength) direction.

*keys to cdeltn [] float
Spatial (x,y) or spectral (w) platescale sampling along a direction.

*keys to linpolref [] float
(0, 2\({\pi}\)) range; Direction of database reference for the linear polarization. linpolref = 0 implies the direction is corresponding to a horizontal axis, analogous to the unit circle reference. Direction is trigonometric. The units are in radians. This is controlled via ctrlparams.

*keys to instwidth [] float
Measure of the utilized instrument’s intrinsic line broadening coefficient. The units are in nm. This is controlled via ctrlparams.

*keys to nline [] int
Number of targeted lines; CLEDB can accept 1-line or 2-line observations.

*keys to tline [:12, nline] string array
String array containing the name of lines to process. Naming convention follows the database directory structure defined as part of the CLEDB_BUILD module.

*keys to xs/naxis1 [] int
Pixel dimension of sobs_in array along the horizontal spatial direction.

*keys to ys/naxis2 [] int
Pixel dimension of sobs_in array along the vertical spatial direction.

*keys to ws [] int
Pixel dimension of sobs_in array along the spectral dimension.

*keys to skybright [] float
Sky brightness measurement used to judge observation quality and rms.

*keys to grtngba \& grtngang [] float
The grating order and position; used to find central wavelength of input observation and judge suitability for inverting.

	keyvals [16] list of variables
	Packing of nx, ny, nw, nline, tline, crpix1, crpix2, crpix3, crval1, crval2, crval3, cdelt1, cdelt2, cdelt3, linpolref, instwidth in a list container to more easily feed the necessary keywords to other modules and/or functions.

	sobs_in [nline][xs,ys,ws,4] float array; nline = 1 || 2 for (1-line) or (2-line)
	sobs_in is passed as a numba typed list [https://numba.readthedocs.io/en/stable/reference/pysupported.html#typed-list] at input. Data are input Stokes IQUV observations of one or two lines respectively. The list will be internally reshaped as a numpy float array of [xs,ys,ws,4] or [xs,ys,ws,8] size.

Ctrl. Parameters ctrlparams.py Class

"""
@author: Alin Paraschiv paraschiv.alinrazvan+cledb@gmail.com
"""

To load the class:
#par=ctrlparams()
#print(vars(par))
#print(a.__dict__)

class ctrlparams:
 def __init__(self):
 ## general params
 self.dbdir = '/home/noxpara/Documents/physics_prog/cle/db204_R0500_UPDT/' ## directory for database
 self.verbose = 1 ## verbosity parameter

 ## Used in CLEDB_PREPINV
 self.integrated = True ## Boolean; parameter for switching to line-integrated data such as CoMP/uCoMP/COSMO
 self.dblinpolref = 0 ## Parameter for changing the database calculation linear reference. Should not need changing in normal situations. radian units.
 self.instwidth = 0 ## Parameter for fine-correcting non-thermal widths if instrument widths are known or computed by user. nm units.

 ## Used in CLEDB_PROC
 self.nsearch = 4 ## number of closest solutions to compute
 self.maxchisq = 1000 ## Stop computing solutions above this chi^2 threshold
 self.gaussfit = 2 ## Gaussian parametric fitting to use instead of the standard CDF fitting
 self.bcalc = 3 ## control parameter for computing the B magnitude for two line observations.
 self.reduced = True ## Boolean; parameter for reduced database search using linear polarization azimuth
 self.iqud = True ## Boolean; parameter for IQU + Doppled data matching when Stokes V is not measurable

 ##numba jit flags
 self.jitparallel = True ## Boolean; Enable or disable numba jit parralel interpreter
 self.jitcache = False ## Boolean; Jit caching for slightly faster repeated execution. Enable only after no changes to @jit functions are required. Otrherwise kernel restarts are needed to clear caches.
 self.jitdisable = False ## Boolean; enable or disable numba jit entirely; Requires python kernel restart!

 import yaml ## Workaround to save the jitdisable keyword to a separate config file.
 names={'DISABLE_JIT' : self.jitdisable} ## Working kernel needs to be reset for numba to pick up the change
 with open('.numba_config.yaml', 'w') as file: ## more info on numba flags can be found here: https://numba.readthedocs.io/en/stable/reference/envvars.html
 yaml.dump(names, file)

Python class that unpacks control parameters used in all modules of the inversion setup. This is an editable imported module that users access and modify. The yaml import seen here is used to configure Numba global options.

Hint

The python importlib module is used in the example notebooks to reload changes.

General Parameters

	dbdir [] string
	Directory where the database is stored after being built with CLEDB_BUILD. This is the main directory containing all ions, and not one of the individual ion subdirectories (e.g. fe-xiii_1074, etc.).

	verbose [] uint
	Verbosity controlling parameter that takes vales 0-3. Levels are incremental (e.g. lev 3 includes outputs from levels 1 and 2).

	verbose == 0: Production - Silent run.

	verbose == 1: Interactive Production - Prints the current module, basic information, and loop steps along with operations currently being run. Global errors will produce a message.

	verbose == 2: Debug - Enables additional warnings for common caveats and error messages. This will also enable execution timing for selected sections.

	verbose == 3: Heavy Debug - Will reveal the pixel being run along with any issues or warnings detected at the pixel level. Output will be hard to navigate!

PREPINV Parameters

	integrated [] boolean
	To use for calibrated COMP/UCOMP data. In this case, the profiles are integrated across the line sampling points. This parameter defaults to 0 to be applicable to spectroscopic data such as DKIST.

	dblinpolref [] rad
	Assign the database reference direction of linear polarization. Angle direction is trigonometric. Values are in radians; e.g. 0 for horizontal ->0deg; np.pi/2 for vertical ->90deg rotation in linear polarization QU. Paraschiv & Judge, SolPhys, 2022 [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract] and the CLE <https://github.com/arparaschiv/coronal-line-emission> database building functions conventionally use a vertical direction for the direction used in computing the database (at Z=0 plane) of dblinpolref =0. See CLE routine db.f line 120. If the database building reference direction is changed, this parameter needs to match that change.

	instwidth [] nm
	Instrumental line broadening/width in nm units should be included here if known. It is not clear at this point if this will be a constant or a varying keyword for one instrument. Setting a instwidth = 0 value will skip including an instrumental contribution when computing non-thermal widths (specout[:,:,:,9]) output in the SPECTRO_PROC module.

PROC Parameters

	nsearch [] uint
	Number of solutions to compute and return for each pixel.

	maxchisq [] float
	Stops searching for solutions in a particular pixel if fitting residuals surpassed this threshold.

	gaussfit [] uint
	Used to switch between CDF fitting and Gaussian parametric fitting with optimization.

	gaussfit == 0: Process the spectroscopic line parameters using only the CDF method.

	gaussfit == 1: Fit the line using an optimization based Gaussian procedure. This approach requires a set of 4 guess parameters. These are the approximate maximum of the emission (max of curve), the approximate wavelength of the core of the distribution(theoretical center of the line), its standard deviation (theoretical width of 0.16 nm), and an offset (optional, hard-coded as 0).

	gaussfit == 2: (Default) Fit the line using a optimization based Gaussian procedure. In this case, the initial guess parameters are fed in from the results of the CDF solution. In this case, the curve fitting theoretically optimizes for a more accurate solution, with sub-voxel resolution.

	bcalc [] uint
	Controls how to compute the field strength in the case of 2-line observations.

	bcalc == 0: Use the field strength ratio of the first coronal line in the list. Only applicable when Stokes V measurements exist; e.g. iqud is disabled.

	bcalc == 1: Use the field strength ratio of the second coronal line in the list. Only applicable when Stokes V measurements exist; e.g. iqud is disabled.

	bcalc == 2: Use the average of field strength ratios of the two coronal lines. Only applicable when Stokes V measurements exist; e.g. iqud is disabled.

	bcalc == 3: Assigns the field strength from the Doppler oscillation inputs. Only applicable when iqud is enabled.

	reduced [] boolean
	Parameter to reduce the database size before searching for solutions by using the linear polarization measurements. Dimensionality of db is reduced by over 2 orders of magnitude, enabling significant speed-ups.

Warning

Below figure shows that the solution ordering, or even sistematic differences might be altered in certain circumstances when compared to a full search. This is occuring predominantly near field component reversals and around Van Vleck locii where meaningful solutions are harder to recover. 98% of pixels are not affected. Needlesly, even in the affected areas, the angle differences are modulo 2:math:pi, and thus the basic geometrical orientation would not be significantly altered.

[image: _images/full-red.jpg]

	iqud [] boolean
	Switches the main matching function of CLEDB_PROC in order to utilize either Stokes V or Doppler oscillations to compute the magnetic field strength and orientation.

Numba Jit Parameters

	jitparallel [] boolean
	When Jit is enabled (jitdisable == False), it controls whether parallel loop-lifting allocations are requested, as opposed to just optimize the execution in single-thread-mode.

	jitcache [] boolean
	Jit caching for slightly faster repeated execution. Enable only after no changes to @jit or @njit functions are required. Otherwise kernel restarts are needed to clear caches.

	jitdisable [] boolean
	Debug parameter to control the enabling of Numba Just in Time compilation (JIT) decorators throughout. Higher level verbosity requires disabling the JIT decorators. This functionality can only be done via Numba GLOBAL flags that need to be written to a configuration file .numba_config.yaml. Any change of this parameter requires a kernel restart.

Constants constants.py Class

-*- coding: utf-8 -*-
"""
@author: Alin Paraschiv paraschiv.alinrazvan+cledb@gmail.com
##
"""
TODO: update final form of constants and units

To load the class:
#consts=Constants()
#print(vars(consts))
#print(consts.__dict__)

class Constants:
 def __init__(self,ion):
 ## Solar units in different projections
 #self.solar_diam_arc = 1919
 #self.solar_diam_deg = self.solar_diam_arc/3600.
 #self.solar_diam_rad= np.deg2rad(0.0174533self.solar_diam_deg)
 #self.solar_diam_st = 2.*np.pi*(1.-np.cos(self.solar_diam_rad/2.))

 ##Physical constants
 self.l_speed = 2.9979e+8 ## speed of light [m s^-1]
 self.kb = 1.3806488e-23 ## Boltzmann constant SI [m^2 kg s^-2 K^-1];
 self.e_mass = 9.10938356e-31 ## Electron mass SI [Kg]
 self.e_charge = 1.602176634e-19 ## Electron charge SI [C]
 self.bohrmagneton = 9.274009994e-24*1.e-4 ## Bohr magneton [kg⋅m^2⋅s^−2 G^-1]; Mostly SI; T converted to G;
 self.planckconst = 6.62607004e-34 ## Planck's constant SI [m^2 kg s^-1];

 # ion/line specific constants
 if (ion == "fe-xiii_1074"):
 self.ion_temp = 6.25 ## Ion temperature SI [K]; li+2017<--Chianti
 self.ion_mass = 55.847*1.672621E-27 ## Ion mass SI [Kg]
 self.line_ref = 1074.62686 ## CLE Ion referential wavelength [nm]
 #self.line_ref = 1074.68 ## Ion referential wavelength [nm]
 self.width_th = self.line_ref/self.l_speed*(4.*0.69314718*self.kb*(10.**self.ion_temp)/self.ion_mass)**0.5 ## Line thermal width
 self.F_factor= 0.0 ## Dima & Schad 2020 Eq. 9
 self.gu = 1.5 ## upper level g factor
 self.gl = 1 ## lower level g factor
 self.ju = 1 ## upper level angular momentum
 self.jl = 0 ## lower level angular momentum
 self.g_eff=0.5*(self.gu+self.gl)+0.25*(self.gu-self.gl)*(self.ju*(self.ju+1)-self.jl*(self.jl+1)) ## LS coupling effective Lande factor; e.g. Landi& Landofi 2004 eg 3.44; Casini & judge 99 eq 34

 elif (ion == "fe-xiii_1079"):
 self.ion_temp = 6.25 ## Ion temperature SI [K]; li+2017<--Chianti
 self.ion_mass = 55.847*1.672621E-27 ## Ion mass SI [Kg]
 self.line_ref = 1079.78047 ## CLE Ion referential wavelength [nm]
 #self.line_ref = 1079.79 ## Ion referential wavelength [nm]
 self.width_th = self.line_ref/self.l_speed*(4.*0.69314718*self.kb*(10.**self.ion_temp)/self.ion_mass)**0.5 ## Line thermal width
 self.F_factor= 0.0 ## Dima & Schad 2020 Eq. 9
 self.gu = 1.5 ## upper level g factor
 self.gl = 1.5 ## lower level g factor
 self.ju = 2 ## upper level angular momentum
 self.jl = 1 ## lower level angular momentum
 self.g_eff=0.5*(self.gu+self.gl)+0.25*(self.gu-self.gl)*(self.ju*(self.ju+1)-self.jl*(self.jl+1)) ## LS coupling effective Lande factor; e.g. Landi& Landofi 2004 eg 3.44; Casini & judge 99 eq 34

 elif (ion == "si-x_1430"):
 self.ion_temp = 6.15 ## Ion temperature SI [K]; li+2017<--Chianti
 self.ion_mass = 28.0855*1.672621E-27 ## Ion mass SI [Kg]
 self.line_ref = 1430.2231 ## CLE Ion referential wavelength [nm] ;;needs to be double-checked with most current ATOM
 #self.line_ref = 1430.10 ## Ion referential wavelength [nm]
 self.width_th = self.line_ref/self.l_speed*(4.*0.69314718*self.kb*(10.**self.ion_temp)/self.ion_mass)**0.5 ## Line thermal width
 self.F_factor= 0.5 ## Dima & Schad 2020 Eq. 9
 self.gu = 1.334 ## upper level g factor
 self.gl = 0.665 ## lower level g factor
 self.ju = 1.5 ## upper level angular momentum
 self.jl = 0.5 ## lower level angular momentum
 self.g_eff=0.5*(self.gu+self.gl)+0.25*(self.gu-self.gl)*(self.ju*(self.ju+1)-self.jl*(self.jl+1)) ## LS coupling effective Lande factor; e.g. Landi& Landofi 2004 eg 3.44; Casini & judge 99 eq 34

 elif (ion == "si-ix_3934"):
 self.ion_temp = 6.05 ## Ion temperature SI [K]; li+2017<--Chianti
 self.ion_mass = 28.0855*1.672621E-27 ## Ion mass SI [Kg]
 self.line_ref = 3926.6551 ## CLE Ion referential wavelength [nm] ;;needs to be double-checked with most current ATOM
 #self.line_ref = 3934.34 ## Ion referential wavelength [nm]
 self.width_th = self.line_ref/self.l_speed*(4.*0.69314718*self.kb*(10.**self.ion_temp)/self.ion_mass)**0.5 ## Line thermal width
 self.F_factor= 0.0 ## Dima & Schad 2020 Eq. 9
 self.gu = 1.5 ## upper level g factor
 self.gl = 1 ## lower level g factor
 self.ju = 1 ## upper level angular momentum
 self.jl = 0 ## lower level angular momentum
 self.g_eff=0.5*(self.gu+self.gl)+0.25*(self.gu-self.gl)*(self.ju*(self.ju+1)-self.jl*(self.jl+1)) ## LS coupling effective Lande factor; e.g. Landi& Landofi 2004 eg 3.44; Casini & judge 99 eq 34
 else:
 print("Not supported ion or wrong string. Ion not Fe fe-xiii_1074, fe-xiii_1079, si-x_1430 or si-ix_3934.\nIon specific constants not returned!")

Python class that unpacks physical constants needed during the inversion. The constants are mainly utilized by the SPECTRO_PROC and BLOS_PROC modules. Ion specific and general atomic and plasma constant parameters are packed herein. The class self-initializes for each requested ion providing its ion specific parameters in a dynamic fashion.

Physical Constants

	solar_diam [float*4]
	Solar diameter in arcsecond, degrees, radians, and steradian units.

	l_speed [] float
	Speed of light; Units in SI [m s\(^{-1}\)]

	kb [] float
	Boltzmann constant; Units in SI [m\(^{-2}\) kg s\(^{-2}\) K\(^{-1}\)]

	e_mass [] float
	Electron mass; Units in SI [Kg]

	e_charge [] float
	Electron charge; Units in SI [C]

	planckconst [] float
	Planck’s constant; Units in SI [m\(^{-2}\) kg s\(^{-1}\)]

	bohrmagneton [] float
	Bohr Magneton; Units in mostly in SI. T converted to Gauss units [kg m\(^{-2}\) s\(^{-2}\) G\(^{-1}\)]

Ion Specific Constants

Note

Four sets of these constants are provisioned for the four possible lines to invert.

	ion_temp [] float
	Ion temperature; Units in SI [K]

	ion_mass [] float
	Ion mass; Units in SI [Kg]

	line_ref [] float
	Theoretical line core wavelength position; Units in [nm]

Caution

Simulation examples might have different set line centers based on the spectral synthesis code used. Doppler shift products might not compute correctly.

	width_th [] float
	Thermal width analytical approximation; Units in [nm]

	F_factor [] float
	Additional factor described by Dima & Schad, ApJ, 2020 [https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract]. Useful when calculating LOS products in the BLOS_PROC module

	gu and gl [] float
	LS coupling atomic upper and lower energy levels factors

	ju and jl [] float
	Atomic upper and lower level angular momentum terms

	g_eff [] float
	LS coupling effective Land\(\acute{e}\) g factor

CLEDB_BUILD - Database Generation

Purpose:

The CLEDB_BUILD module is used to generate a database of synthetic IQUV profiles for the four provisioned ions, with a range of density estimations, range of possible LOS positions, and all possible magnetic angle configurations, for one magnetic field strength B = 1. In normal circumstances this module is only run once per system where the inversion is installed. A module diagram is provided in this section.

CLEDB_BUILD Configuration

Here we describe the scripts included in the config directory.

	DB.INPUT
	Main configuration file for the database generation. It contains the physical parameters configurations for the databases to be generated.

* NY NED NX NBPHI NBTHETA
* standard 51 10 61 180 90
51 10 61 180 90
* ELNMIN ELNMAX YMIN YMAX XMIN XMAX BPMIN BPMAX BTMIN BTMAX
 -1.5 2.3 1.000 1.500 -1.50 1.50 0.000 6.28318548 0.000 3.14159274
* above line is important to be kept with 3 spaces and same number of decimals for bash script to work

Danger

It is critical to keep the same number of parameter decimals and white spaces between the values when modifying the DB.INPUT configuration file. The automated job-scripts that run the jobs are dependent on precisely reading each entry.

	ATOM.ion
	This set of files contain the atomic configuration data to be used for calculations. Full level atoms would have a too high computational requirement to use. To avoid this, we use reduced calculations. For example take the Fe XIII lines. The atom configurations are set up as reduced 4-level and 6-transition calculations including the M1 and E1/E2 transitions from upper levels to M1 upper levels. See Fig. 3 of Casini & Judge, ApJ, 1999 [https://ui.adsabs.harvard.edu/abs/1999ApJ...522..524C/abstract] This level/transition setup mimics the IQUV fluxes from a full level calculation for each of the the selected infrared coronal lines.

Caution

Advanced understanding required. In general, users should not modify the ATOM files.

	INPUT.ion(a/b)
	These are input and configuration files that are read when generating databases. The wlmin and wlmax parameters control which lines described in the ATOM.ion files are processed. In the case of Fe XIII, a separate INPUT.ion configuration (a/b) is needed for each line to produce distinct database entries.

Hint

In the case of Fe XIII, a custom INPUT.ion configuration with wlmin and wlmax constraints that includes both lines can be created. This would lead to the synthesis of a direct 2-line database. The sdb_preprocess function in the CLEDB_PREPINV module is provisioned to process such a database configuration. This is an alternate configuration that can be fairly straightforward to implement for a setup aimed at inverting only for the Fe XIII pair. Please note that this is a legacy feature that should not be treated as a default/expected configuration for generating databases.

	IONEQ
	Ionization equilibrium data from CHIANTI.

	GRID.DAT
	Defines the range and resolution of a CLE simulation. In the case of database building it has no significant functionality and is only required due to CLE’s implicit dependency on it’s import.

	db"xxxx"_"arch"
	Executable CLE binaries for generating databases. xxxx is the used version of the CLE Fortran code. arch can be linux, rclinux or darwin. The three different versions are provided in the distribution for cross-platform compatibility.

	linux – Debian compiled

	rclinux – CentOs compiled on research computing system.

	darwin – mac osx x86 compiled.

Attention

Ideally, the xxxx version of the CLE code should match its latest stable release. [https://github.com/arparaschiv/coronal-line-emission]

DB.INPUT Parameters

	ny, ymin, ymax
	Number of y (horizontal) heights in R\(_\odot\) units for which to compute database entries. The ny heights are spanned between ymin and ymax values. Regardless of user input, polarization signal can not computed at this time for R\(_\odot\) < 1 due to the assumptions and interpretation focused on off-limb coronal emission.

Attention

Observations show that the amount of polarization in Fe XIII drastically decreases with height. One should not normally expect to reasonably recover full Stokes polarization signal at y > 1.5\(_\odot\).

	ned, elnmin, elnmax
	Number and range of ambient electron density values for which to compute calculations. elnmin and elnmax define a logarithmic range in which to spread the ned densities. The center of this range is an analytical approximation of a standard electron density expected for a y height above the limb following the Baumbach formulation. See equation 12 and discussion in Paraschiv & Judge, SolPhys, 2022 [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract] . For example, at y = 1.1R\(_\odot\) we expect a logarithm of density log(n\(_e\)) ~ 8 cm\(^{-3}\). Setting ned = 10, elnmin = -2 and elnmax = 2 will generate databases for 10 density values logarithmically scaled between log(n\(_e\)) \(\approx\) 6 - 10 cm\(^{-3}\).

Attention

Please keep in mind some potential inversion breaking assumptions. A reasonable density range of log(n\(_e\)) 7-10 is compatible with:

	low enough densities so that collisional depolarization becomes unimportant inside the Hanle saturated regime;

	compatible with expected plasma densities in a standard 1.0-1.5R\(_\odot\) observation range (also remember above point about polarization vs. height).

	nx, xmin, xmax
	Number of x (depth along the LOS) positions to compute databases for in R\(_\odot\) units. The nx positions are linearly spanned between xmin and xmax values.

Attention

Due to geometric considerations, setting xmin and xmax values to more than \(\pm\) 1.0 R\(_\odot\) will most probably not result in practical benefits. This is because a higher 1.5 R\(_\odot\) apparent height, a 1.0 R\(_\odot\) depth would correspond to an actual height above the limb of 1.8 R\(_\odot\). This is in the more extreme range of the polarization formation vs height issue described above.

	nbphi, bpmin, bpmax
	Number and range of CLE \(\varphi\) magnetic LOS angles to compute. The nbphi angles are spread along a bpmin - bpmax range set to 0 - 2\(\pi\) by default.

	nbtheta, btmin, btmax
	Number and range of magnetic CLE \(\vartheta\) Azimuth angles to compute. The nbtheta range is set to btmin - btmax . By default this is set to a 0 - 1\(\pi\) reduced range due to spherical transformation definitions.

Danger

Due to how the problem is posed, please do not interchange the maximum ranges between the two magnetic angles, as it would lead to execution errors.

Danger

The following apply both to CLE and CLEDB conventions:

	ny, ymin, ymax have an odd number of points in the intervals to capture both interval ends in range. Consequently, the range is traversed by ny-1 lenghts/intervals.

	nx, xmin, xmax have an odd number of points in the interval to capture the exact traversal through 0 and both ends. Consequently, the range is traversed by nx-1 lenghts/intervals.

	nbphi, bpmin, bpmax and nbtheta, btmin, btmax have an even number of points in the interval and the range is traversed by nbphi and nbtheta (no -1!) in order to skip the last entries corresponding to bpmax and btmax. This is done in order to not introduce degeneracies for the repeated entries that would appear at 0 <–> 2pi and 0 <–> pi, respectively.

This convention for traversal needs to be followed precisely through both CLE and CLEDB to insure a corect rendering of solutions and a correct database matching when using CLEDB_GETSUBSET.

The CLEDB_BUILD Job Script

The rundb_1line.sh job script will ingest the ATOM, INPUT, DB.INPUT, etc. files and split the job into available CPU threads. The user is asked for keyboard input on how many threads to use and for which line/ion to generate a database.

[image: _images/2_CLEDB_BUILD.png]
The script runs in a Bash shell terminal session. It can handle both Linux and Darwin (OSX) environments. For OSX, an additional dependency is required. Users need to install the GNU implementation of the sed command. The simplest way is to achieve this is by using the homebrew environment:

brew install gnu-sed

The job script will split the serial ny tasks on the requested CPU threads and run in dedicated folders that will be sanitized upon completion, preserving only the output database files and metadata headers.

Logs for each script (“X”) are written in real time and can be checked interactively while the job is running.

tail BASHJOB_"X".LOG

A Slurm enabled version, rundb_1line_slurm which has hard-coded choices to be compatible with headless runs is also provided. The parameters need to be checked manually before running. Detailed information about the Slurm enabled routines can be found in the detailed README-SLURM section.

Note

A standalone README-SLURM.MD readme is included in the inversion root directory.

Extensive notes about the parallel job script implementations are found in the detailed README-RUNDB section.

Note

A standalone README-RUNMD.md readme is included with the CLEDB_BUILD module.

CLEDB_BUILD Output

Databases for one up to four of the currently available ions/lines can be constructed by running the job script successively.

Tip

As long as enough free CPU threads are available, multiple rundb_1line.sh jobs can be started simultaneously for different ions as there is no storage or computational overlap.

The output database is written to the storage disk. Each individual line will be written in its dedicated folder.

Note

Prior to git commit update-iqud CLEDB_BUILD wrote compressed data using a simple float64 \(\rightarrow\) int16 conversion using a division constant, set to -2.302585092994046e15. Same constant needs to be used when writing but also when reading databases into memory as part of the CLEDB_PREPINV module. This approach proved to create numerical instabilities and is currently disabled.

A database folder hierarchical system is needed in order to ingest the selected database calculations by the CLEDB_PREPINV module. The folder system is defined as: element-ionstage_line.

	fe-xiii_1074

	fe-xiii_1079

	si-x_1430

	si-ix_3934

Note

A fifth option for directly writing two line databases for Fe XIII is still preserved as a legacy option as described above. The .hdr and .DAT database files need to be placed in the main ctrlparams dbdir key without a specific line subfolder.

This convention is used by all three modules of CLEDB.

Warning

Running successive jobs for the same ion/line will erase its database calculations if they exist!

Individual data stores for each computed height are created to ease I/O operations when reading databases into memory for inverting. A db”xxxx”.dat file is generated at each y height in the ny set, where “xxxx” represents the distance above the limb in units of R\(_\odot\) (DB0000.dat corresponds to the solar limb or a height of 1.00R\(_\odot\)). A metadata db.hdr file is produced in the individual line directory that contains the range dimensions and parameters applicable to any one database set of files.

Danger

The user should not change the parameter configurations in DB.INPUT between multiple ion/line runs that should be part of the same database.

Generating \(\sim\) 5 \(\cdot\) 10\(^8\) calculations per line for two lines will occupy \(\approx\) 32 Gb of disk space with no storage compression.

CLEDB_PREPINV - Pre-processing

Purpose:

The CLEDB_PREVINV module processes both the input data and the CLEDB_BUILD generated databases to prepare for the main inversion processing.

For 1-line cases, only the observation is pre-processed. Observation keywords are ingested, the geometric height is computed and the spectroscopic IQUV profiles are integrated.

In addition for 2-line observations, the observation linear polarization is rotated to match the database calculation as described in Paraschiv & Judge, SolPhys, 2022 [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract]. The module then performs a height match between the input data and database configuration. Only the optimal subset of database height entries are pre-loaded into memory to minimize I/O operations but also to avoid I/O bottlenecks when running the analysis routines of the CLEDB_PROC module.

CLEDB_PREPINV Module Functions

Note

The \(\diamond\), \(\triangleright\), and \(\triangleright\triangleright\) symbols respectively denote main, secondary, and tertiary (helper) level functions. Main functions are called by the example scripts. Secondary functions are called by the main functions, and tertiary from either main or secondary functions.

	\(\diamond\) SOBS_PREPROCESS
	Main function to process an input observation and ingest the relevant header keywords. Generally, this function iterates over the observation maps and sends each pixel to the internal functions. It returns a processed observation array (input dependent) that is ready for analysis. Additional products are calculated. e.g. a height map (used to match databases), signal statistics, etc. via its subfunctions.

	\(\triangleright\) OBS_CALCHEIGHT
	Calculates height map of the same xy dimensions as the input array. Each pixel encodes the solar height in units of R\(_\odot\).

	\(\triangleright\) OBS_INTEGRATE
	Estimates background counts using a cumulative distribution function (CDF) statistical method, then integrates along the wavelength dimension, in all IQUV components of all input lines. Profile integration is required because the database dimensionality and inversion computational times would not be feasible when processing full-spectra observations. See Paraschiv & Judge, SolPhys, 2022 [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract] for additional information.

	\(\triangleright\triangleright\) OBS_CDF
	Computes the CDF distribution from spectra corresponding to one voxel.

	\(\triangleright\) OBS_QUROTATE
	If ingested a 2-line observation, the Stokes Q and U components are rotated to match the database’s reference direction with the pbservation reference direction. The observation reference direction should be read as input from the header metadata. This enables using just a 1D database computation (along y heights) to match the any observed Stokes profiles, under any linear polarization reference in a 2D map with these applied rotational transforms. See Paraschiv & Judge, SolPhys, 2022 [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract] for extended information.

	\(\diamond\) SDB_PREPROCESS
	Main function for selecting and reading into memory the optimal database calculations that are compatible with the observations processed via SOBS_PREPROCESS.

	\(\triangleright\) SDB_FILEINGEST
	Glob the database directory to ingest available database heights and process the database configuration using the header metadata.

	\(\triangleright\) SDB_FINDELONGATION
	Compares the database entries (along ny) with the heights covered by the observation to deduce the closest matching database entries and minimizes the number of database DBXXXX.dat files to be read into memory.

	\(\triangleright\) SDB_PARSEHEADER
	Parses the database header information from the db.hdr file.

	\(\triangleright\triangleright\) SDB_LCGRID
	Computes the grid spacing for the logarithm of density ranges covered in the database. The grid is correspondent to the density configuration in DB.INPUT of the database calculations.

	\(\triangleright\) SDB_READ
	Reads all needed database files. This concludes all the disk I/O operations done during one run of the inversion.

Warning

As databases are written as binary files, the variable type fed to the np.fromfile reader needs to match the Fortran datatype CLE dbe.f uses to write the calculations. Currently these are set as single precision floats of np.float32 and REAL types respectively.

The CLEDB_PREPINV module is not fully compatible with Numba non-python mode, due to disk I/O operations. All non-python compatible functions are enabled in non-python mode while the rest are compiled in object-mode via the hard-coded “forcedobj=True” flag in the @jit decorators. The Python Modules section provides more details on the differences between the two Numba modes. The algorithm flow is described in the below diagram.

[image: _images/3_CLEDB_PREP.png]

CLEDB_PREPINV Main Variables

	sobs_tot [xs,ys,nline*4] float array
	Contains the background subtracted, integrated, and normalized Stokes IQUV spectra for 1-line ([xs,ys,4]) or 2-line ([xs,ys,8]) observations.

	sobs_totrot [xs,ys,nline*4] float array
	Derived from sobs_tot. The Stokes Q and U components are rotated along the center of the Sun to match the reference direction for linear polarization (the reference in which the database is created by CLEDB_BUILD). In inner functions of CLEDB_PROC only one pixel is passed at a time as sobs_1pix. The variable is initialized as a “zero” array that is returned in the case of 1-line observations to keep a standardized function input/output needed for Numba vectorization.

	background [xs,ys,nline*4] float array
	Returns averaged background counts for each observed voxel and each Stokes component.

	rms [xs,ys,nline*4] float array
	Returns the root mean square (RMS) of the total counts in each Stokes profile. The rms calculation is correspondent to the ratio between intensity in the line core and background counts (the variance). This measurement shows the quality in the signal for a particular observed voxel.

	yobs [xs,ys] float array
	The header keyword input is used to construct a height projection for each observed voxel in units or R\(_\odot\). In inner functions of CLEDB_PROC only one pixel is passed at a time as yobs_1pix.

	aobs [xs,ys] float array
	Stores the linear polarization angle transformation performed by the OBS_QUROTATE function. This information will be used to derotate the matched database profiles found by the CLEDB_INVPROC 2-line inversion function for comparison. In inner functions of CLEDB_PROC only one pixel is passed at a time as aobs_1pix. The variable is initialized and returned as a “zero” array in the case of 1-line observations due to Numba vectorization requirements.

	dbsubdirs [string] or [string list]
	Contains the directory structure formatted as described in the CLEDB_BUILD Output section.

	database [ned,nx,nbphi,nbtheta,nline*4] list of float arrays
	The list is the minimal subset of databases that are compatible with the observation taken from the set of ny entries of the database.

	dbhdr [ints, floats and strings] list
	Database header information containing the ranges and physical parameters used to generate the database.

	db_enc [xs,ys] float array
	Keeps an encoding of which of the memory loaded databases (elements in list of databases) to use for matching in each pixel.

	issuemask [xs,ys] float array
	An array that encodes issues appearing during processing. This array will be updated across all modules. The tentative issuemask implementation is described separately.

Note

Input variables, e.g. header *keys, sobs_in, ctrlparams, constants, etc. that are described in the Input Variables and Parameters section are not repeated in this section.

CLEDB_PROC - Analysis and Inversion

Purpose:

Three main functions, SPECTRO_PROC, BLOS_PROC, and CLEDB_INVPROC are grouped under the CLEDB_PROC data analysis and inversion module. Based on the 1-line or 2-line input data, two or three modules are called. Line of sight or full vector magnetic field outputs along with plasma, geometric and spectroscopic outputs are inverted here. The algorithm flow and a data processing overview is described in the flowchart.

[image: _images/4_CLEDB_PROC.png]

The SPECTRO_PROC Function

Purpose:

Ingests the fully prepped data from sobs_preprocess and produces spectroscopic outputs for each input line. Part of the outputs are used downstream in BLOS_PROC or CLEDB_INVPROC. This module requires data in the formats as resulting from the CLEDB_PREPINV module. Optional sub-modules are envisioned to be integrated into this processing based on upstream instrument processing and retrieved data quality. This is a computationally demanding and time consuming function.

Note

The \(\diamond\), \(\triangleright\), and \(\triangleright\triangleright\) symbols respectively denote main, secondary, and tertiary (helper) level functions. Main functions are called by the example scripts. Secondary functions are called by the main functions, and tertiary from either main or secondary functions.

SPECTRO_PROC Main Functions

\(\diamond\) SPECTRO_PROC

	\(\triangleright\) CDF_STATISTICS
	Performs pixelwise analysis on the stokes IQUV spectra for each line and computes relevant spectroscopic outputs (see specout) by using via a ctrlparams gaussfit key. By default a gaussian fitting coupled with non-parametric approaches, namely the analysis of CDF functions is utilized.

	\(\triangleright\triangleright\) OBS_CDF and ` OBS_GAUSSFIT
	These are two helper routines used by CDF_STATISTICS to perform parameter fits and estimations.

Hint

The ctrlparams gaussfit key == 2 represents the slowest component of the entire CDF_STATISTICS block. On the other hand, it is the most accurate and reliable profile fitting method of the three options.

	\(\triangleright\) ML_LOSDISENTANGLE (Opt.)
	Provisioned to be implemented at a later time. If observations permit, uses Machine Learning techniques for population distributions to help disentangling multiple emitting structures along the LOS in situations where the single point assumption might fail.

	\(\triangleright\) LEV2CALIB_WAVE (Opt.)
	Provisioned to be implemented at a later time. Higher order wavelength calibration using the spectroscopic profiles. See Ali, Paraschiv, Reardon, & Judge, ApJ, 2022 [https://ui.adsabs.harvard.edu/abs/2022ApJ...932...22A/abstract] for additional details. This function can couple if the upstream wavelength accuracy of the input observation is lower than 0.005 nm.

Important

Upstream Level-1 calibration for DKIST is provisioned to match or exceed this accuracy requirement. Implementation is of low priority.

	\(\triangleright\) LEV2CALIB_ABSINT (Opt.)
	To be implemented at a later time, if feasible. Absolute intensity calibration function that produces an additional output, the calibrated intensity in physical units. The approach is not easily automated as it requires a more convoluted and specific planning of the observations to gather the necessary input data.

Important

This functions was provisioned in the incipient stages of the pipeline design. Subsequently, it was found that CLEDB can utilize only normalized Stokes profiles such that absolute calibrations are not required (see Paraschiv & Judge, SolPhys, 2022 [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract]). Implementation is halted at this time.

SPECTRO_PROC Main Variables

	sobs_cal [nx,ny,sn,4] float array (opt.)
	Optional calibrated level-2 data in intensity and or wavelength units. This array would be used by the CDF_STATISTICS function instead of sobs_in.

Note

As LEV2CALIB_ABSINT and LEV2CALIB_WAVE are not currently implemented, sobs_cal is currently just a placeholder.

	specout [nx,ny,nline,12] output float array
	
Returns 12 spectroscopic output products, for each nline input line and for every pixel location.

	
	specout[:, :, :, 0]
	Wavelength position of the line core. Units are [nm].

	
	specout[:, :, :, 1]
	Doppler shift with respect to the theoretical line core defined in the constants class line_ref key. Units are [nm].

	
	specout[:, :, :, 2]
	Doppler shift with respect to the theoretical line core defined in the constants class line_ref key. Units are [km s\(^{-1}\)].

	
	specout[:, :, :, 3:6]
	Intensity at computed line center wavelength (specout[:, :, :, 0]) for Stokes I, Stokes Q and U. Units are ADU or calibrated physical units if LEV2CALIB_ABSINT is utilized.

	
	specout[:, :, :, 6]
	Intensity at lobe maximum for Stokes V. The signed “core” counts are measured in the core of the absolute strongest lobe. Thus, the Stokes V measurement will not match the wavelength position of the Stokes IQU intensities. Units are ADU or calibrated physical units if LEV2CALIB_ABSINT is utilized.

Attention

If the ctrlparams class iqud key == True, this dimension will be returned implicitly as 0.

	
	specout[:, :, :, 7]
	Averaged background intensity outside the line profile for the Stokes I component. Since background counts are in theory independent of the Stokes measurement, we utilize just this one realization. Units are ADU or calibrated physical units if LEV2CALIB_ABSINT is used.

	
	specout[:, :, :, 8]
	Total line FWHM. Units are [nm].

	
	specout[:, :, :, 9]
	Non-thermal component of the FWHM line width. A measure or estimation of the instrumental line broadening/width will significantly increase the accuracy of this determination. Units are [nm].

Attention

Sporadic pixels close to limb in synthetic data exhibited very narrow profiles but otherwise they were deemed usable by the statistics tests. This turns into a problem that will throw invalid value runtime warnings when computing this quantity. To fix, we set specout[:, :, :, 9] = 0 in all such occurences.

	
	specout[:, :, :, 10]
	Fraction of linear polarization Pl with respect to the total Stokes I counts. Dimensionless.

	
	specout[:, :, :, 11]
	Fraction of total polarization (linear + circular) Pv with respect to the total Stokes I counts. Dimensionless.

Attention

Regardless if solving for 1-line or 2-line observations, specout will return both nline dimensions. In the case of 1-line observations, the nline = 1 dimension corresponding to the hypothetical second line is returned as 0 for all pixel locations. The unused dimension can be removed from the upstream example script, if needed. This behavior is known and enforced to keep output casting static, making the codebase compatible with Numba and speeding up execution.

The BLOS_PROC Function

Error

Stokes V observations are required for this analytical method. Thus, BLOS_PROC is incompatible with the IQUD setup.

Purpose:

Implements the analytical solutions of Casini & Judge, ApJ, 1999 [https://ui.adsabs.harvard.edu/abs/1999ApJ...522..524C/abstract] and Dima & Schad, ApJ, 2020 [https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract] to calculate the LOS projected magnetic field strength and magnetic azimuth angle. The module returns two degenerate constrained magnetograph solutions, where the one that matches the sign of the atomic alignment is more precise. The less precise “classic” magnetograph formulation is also returned.

Attention

There is not enough information in 1-line observations to deduce which of the two degenerate solution is “more precise”. The “classic” magnetograph estimation is less precise than the optimal degenerate constrained magnetograph solution, but more precise than the other.
The differences will vary from insignificant to tens of percents of the magnetic field strength based on observation and magnetic geometry, and degree of linear polarization. The choice of what product to use remains the prerogative of the user.

This branch requires only 1-line observations (4 stokes profiles). The setup is used to get as much magnetic information as possible (the field strength and LOS projection) in the absence of a second line. For a sobs_tot input of 2-lines, the module will produce independent products for each input line observation.

Hint

Observations of Si X 1430.10 nm will benefit from an additional alignemnt correction due to the non-zero F factor of this transition. Additional details in Dima & Schad, ApJ, 2020 [https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract].

BLOS_PROC Main Functions

\(\diamond\) BLOS_PROC

BLOS_PROC Main Variables

	blosout [nx,ny,4*nline] output float array
	The array returns 4 or 8 products containing LOS projected magnetic field estimations and magnetic azimuth angle in G units at each pixel location.

	
	blosout[:, :, 0] and/or blosout[:, :, 4]
	First degenerate constrained magnetograph solution for each respective line.

	
	blosout[:, :, 1] and/or blosout[:, :, 5]
	Second degenerate constrained magnetograph solution for each respective line.

	
	blosout[:, :, 2] and/or blosout[:, :, 6]
	“Classic” magnetograph solution for each respective line. Values lie in between the two above degenerate solutions.

	
	blosout[:, :, 3] and/or blosout[:, :, 7]
	Magnetic field azimuth angle derived from the Q and U linear polarization components of the respective line; -\(\pi\) to \(\pi\) range.

Warning

A \(\frac{\pi}{2}\) degeneracy will manifest due to using arctan functions to derive the angle.

The CLEDB_INVPROC Function

Purpose:

Main 2-line inversion function. CLEDB_INVPROC compares the preprocessed observations with the selected databases by performing a \(\chi^2\) goodness of fit measurement between each independent voxel and the complete set of calculations in the matched database. If CLEDB_GETSUBSET is enabled via ctrlparams class getsubset key, a presorting of the database entries to those that match the direction of observer linear polarization azimuth is performed. After the main sorting is performed, the best database solutions are then queried with respect to the physical parameters that gave the matched profiles. CLEDB_INVPROC acts like a pixel iterator and variable ingestion setup for either CLEDB_MATCHIQUV or CLEDB_MATCHIQUD.

Caution

The reduced presorting will slightly change the final ordering of solutions in certain cases.

CLEDB_INVPROC Main Functions

\(\diamond\) CLEDB_INVPROC

	\(\diamond\) CLEDB_MATCHIQUV
	Matches a set of two full Stokes IQUV observations with a model observation of the same Stokes quantities. Solutions are 2 times degenerate with respect to the LOS. Matching is done individually for one pixel in the input array. This is a computationally demanding and time consuming function.

	\(\diamond\) CLEDB_MATCHIQUD
	Matches a set of two partial Stokes IQU observations with a model observation of the same Stokes quantities. The matched solutions are initially more degenerate than CLEDB_MATCHIQUV, usually 4 timee with respect to LOS and signed field strength combinations. We are currently evaluating the feasibility of including additional information from Doppler oscillation tracking to recover field strengths and reduce degeneracies (to 2 times). Matching is done individually for one pixel in the input array. This is a computationally demanding and time consuming function.

Note

Based on the ctrlparams iqud key only one of the CLEDB_MATCHIQUV or CLEDB_MATCHIQUD setups is selected and utilized.

	\(\triangleright\) CLEDB_GETSUBSETIQUV
	When enabled via ctrlparams, the information encoded in the Stokes Q and U magnetic azimuth is used to reduce the matched database by approximately 1 order of magnitude in terms of observation-comparable calculations.

	\(\triangleright\) CLEDB_GETSUBSETIQUD
	When reduced is enabled via ctrlparams, the information encoded in the doppler wave angle azimuth is used to reduce the matched database by approximately 1 order of magnitude in terms of observation-comparable calculations.

Attention

Tests done on CoMP and uCoMP data showed that when Doppler oscialtions are avaialble, using the phase angle as a proxy (as opposed to the default linear polarization azimuth) for running reduced runs, produces a more sharp output with better details especially around regions where magnetic polarity reverses. CLEDB_GETSUBSETIQUD will use this information if available. This option can not be directly enabled for IQUV matches yet, as the doppler oscilation data requires special observing conditions and separate processing. Some altering of matching and subset selecting functions by the user will be required to enable such a setup.

Important

If the subset calculation is enabled via ctrlparams, execution time in the case of large databases is significantly decreased.

	\(\triangleright\) CLEDB_PARTSORT
	A custom function that performs a fast partial sort of the input array because only a small subset of ctrlparams nsearch key solutions are requested via the ctrlparams nsearch key. This increases execution times by a few factors when requesting just few nsearch solutions (< 100 on 10\(^8\) entries databases). CLEDB_PARTSORT is used by CLEDB_MATCHIQUV, CLEDB_MATCHIQUD, and CLEDB_GETSUBSET functions. In CLEDB_MATCH, CLEDB_PARTSORT performs a < nsearch sorting of database entries based on the \(\chi^2\) metric. In CLEDB_GETSUBSET, CLEDB_PARTSORT selects for each \(\varphi\) angle orientation only the most compatible \(\vartheta\) directions based on the \(\Phi_B\) azimuth given by the linear polarization Q and U measurements.

	\(\triangleright\) CLEDB_PHYS
	Returns 9 physical and geometrical parameters corresponding to each selected database index following the ctrlparams nsearch and maxchisq constraints. These products are returned as dimensions of the invout output variable.

	\(\triangleright\triangleright\) CLEDB_PARAMS, CLEDB_INVPARAMS, CLEDB_ELECDENS, and CLEDB_PHYSCLE
	These are helper functions that prop CLEDB_PHYS by providing interfaces with the parameters encoded in selected databases and helping transform quantities between different geometrical systems.

	\(\triangleright\) CLEDB_QUDEROTATE
	The inverse function of OBS_QUROTATE. Derotates the Q and U components from each selected database entry, in order to make the set of fitted solutions directly comparable with the original integrated input sobs_tot observation.

CLEDB_INVPROC Main Variables

	database [ned,nx,nbphi,nbtheta,nline*4] list of float arrays
	Individual entries from the database list are fed to the CLEDB_MATCHIQUV or CLEDB_MATCHIQUD functions. From the database list, only the best matching height entry via db_enc variable is passed via the database_in internal variable.

	database_sel [ned,nx,nbphi,nbtheta,nline*4] float array
	An element reduced database list that is used by CLEDB_MATCHIQUV or CLEDB_MATCHIQUD for matching the observation in one pixel. This alleviates memory shuffling and array slicing operations. The array is reshaped into a 2D [ned*nx*nbphi*nbtheta,nline*4] form (e.g. [index,nline*4]). In the case where ctrlparams reduction key is enabled, database_sel is additionally reduced with respect to the number of potential indexes to match. Otherwise, the variable is only trimmed of the entries where the sign of Stokes V does not math the observation.

	sobs_totrot
	Input variable to CLEDB_INVPROC described here.

	sobs_dopp
	Doppler oscillation magnetic field strength and POS orientation resulting from Doppler oscillation analysis. The two utilized dimensions are sobs_dopp[:,:,0] and sobs_dopp[:,:,1] representing respectively the magnetic field strength and the wave angle. The two other dimensions represent POS projections of the magnetic field computed either via the linear polarization azimuth or the afore mentioned wave angle, but are not currently utilized.

Caution

sobs_dopp is only used as input to CLEDB_MATCHIQUD when ctrlparams iqud is enabled. For Numba consistency, an empty array is also passed to CLEDB_INVPROC when performing full IQUV inversions, but it is never used.

	chisq [ned*nx*nbphi*nbtheta,nline*4] float array
	Computes the squared difference between the voxel IQUV measurements [nline*4] and each index element of the database [index,nline*4].

	sfound [nx,ny,nsearch,nline*4] output float array;
	Returns the first nsearch de-rotated and matched Stokes IQUV sets from the database. These can be compared to the input Stokes observation.

Caution

As the databases are only computed for B = 1 G, the Stokes V profiles will not match accurately. The sign should match.

	invout [nx,ny,nsearch,11] output float array
	Main 2-line inversion output products. invout contains the matched database index, the \(\chi^2\) fitting residuals, and 9 inverted physical parameters, for all nsearch closest matching solutions with respect to the input observation. The 11 parameters follow with individual descriptions.

	
	invout[:,:,:,0]
	The index of the database entry that was matched at the nsearch rank. The index is used to retrieve the encoded physics that match the observations.

	
	invout[:,:,:,1]
	The \(\chi^2\) residual of the matched database entry.

	
	invout[:,:,:,2]
	Plasma density computed via the database. This output is applicable for the Fe XIII 1074.68/1079.79 line ratio (same ion). Other line combinations will produce less accurate results due to the relative abundance ratios, that are varying dynamically. For a real-life observation, we do not consider trustworthy the implicit static relative abundance ratios of different ions, resulted from the CHIANTI tabular data implicitly ingested via the ATOM files when build databases. Units are logarithm of number electron density in cm\(^{-3}\).

	
	invout[:,:,:,3]
	The apparent height of the observation. Analogous to the yobs variable. Units are R\(_\odot\).

	
	invout[:,:,:,4]
	Position of the dominant emitting plasma along the LOS. Units are R\(_\odot\).

	
	invout[:,:,:,5]
	Magnetic field strength recovered via the ratio of observed stokes V to database Stokes V (computed for B = 1 G); Uses ctrlparams class bcalc key. Units are [G].

Warning

Due to how the problem is posed, CLEDB_MATCHIQUV can only use bcalc = 0, 1, or 2 while CLEDB_MATCHIQUD can only use bcalc = 3.

Attention

The bcalc estimation employs a logical test to avoid division by 0 in cases where the Zeeman signal vanishes due to geometry in teh database. If the database Stokes V component is less than 1e-7, then the matched field strength is set to 0 regardless of what the signal is in the observation(usually it is very small, or noise)

	
	invout[:,:,:,6]
	Magnetic field \(\varphi\) LOS angle in CLE frame. Range is 0 to \(2\pi\).

	
	invout[:,:,:,7]
	Magnetic field \(\vartheta\) POS Azimuth angle in CLE frame. Range is 0 to \(\pi\).

	
	invout[:,:,:,8]
	Bx cartesian projected magnetic field depth/LOS component. Units are [G].

	
	invout[:,:,:,9]
	By cartesian projected magnetic field horizontal component. Units are [G].

	
	invout[:,:,:,10]
	Bz cartesian projected magnetic field vertical component. Units are [G].

Warning

	Solutions are skipped if the \(\chi^2\) fitting residuals are greater than the limit set by the ctrlparams maxchisq key. Thus, it is possible and even expected that less than requested ctrlparams nsearch solutions to be returned for one observed voxel in both invout and sfound.

	Regardless of the number of solutions (if any) that are found inside the ctrlparams maxchisq and nsearch constraints, the invout output array will keep its dimensions fixed and return “0” value fields to keep output data shapes consistent. This is a Numba requirement. Only the index is set to “-1” to notify the user that no result was outputted. sfound behaves similarly.

Output Products

Output Variable Overview

The main CLEDB inversion algorithm outputs are stored in the following variables:

	
	specout
	12 SPECTRO_PROC output products. These are described here.

	
	blosout
	4 BLOS_PROC output products. These are described here.

	
	invout
	11 CLEDB_INVPROC output products. These are described here.

	
	sfound
	11 CLEDB_INVPROC matched profile list. These are described here.

	
	issuemask
	Records any issues that arise in processing for each pixel (to be implemented). The issuemask will be updated by both modules.

Note

The global process followed to produce these outputs is sketched in The CLEDB Modules.

Tentative Issuemask Implementation

The inversion will implement a confidence/issue map of size [nx,ny] for all spatial pixels in an input observation that will be returned along with the main output products.

Important

Issuemask encoding not currently active. Final form to be decided and implemented.

Example of issuemask coding:

	Code 0
	No apparent problem in pixel.

	Code 1
	One or more of Stokes I, Q, U are lower than noise RMS threshold.

	Code 2
	Stokes V is lower than noise RMS threshold.

	Code 4
	Linear polarization is close to Van-Vleck ambiguity (warning).

	Code 8
	B\(_{LOS}\) or \(\Phi_B\) is lower than noise threshold (for 1-line observations).

	Code 16
	Database fit failed to converge reliably (for 2-line obs).

	Code 32
	One or more of B, \(\Phi_B\), \(\Theta_B\) \(\vartheta\) \(\varphi\) are lower than noise threshold (for 2-line observations).

	Code 64
	-—————TBD———————-

	Code 128
	-—————TBD———————-

Encoding the information is done sequentially when progressing through the different modules. This will be done by using powers of 2. The issuemask values thus become cumulative. Following the sketch map encoding from above, we take for example a pixel from a 1-line observation with unreliable Stokes V signal. The uncertainty in Stokes V will also lead to compromised B\(_{LOS}\) information. Thus, the issuemask will encode a value of 10 for that respective pixel.

Thorough Readme Files

Warning

	The sections below are dynamically linked to standalone readme markdown files. A documentation rebuild will capture changes in any of the files.

	Consequentially, some dynamic links to functions or other documents will not work when displayed here as they would from the direct rendering of the readmes. This is because relative paths cannot be kept consistent.

MAIN README

CLEDB Coronal Magnetic Field Database Inversion

[image: github] [https://github.com/arparaschiv/solar-coronal-inversion]
[image: Documentation Status] [https://cledb.readthedocs.io/en/latest/?badge=latest]
[image: ADS] [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract]

Repository for CLEDB - the Coronal Line Emission DataBase inversion distribution.

Authors: Alin Paraschiv & Philip Judge. High Altitude Observatory & National Solar Observatory

Contact: arparaschiv “at” ucar.edu; paraschiv.alinrazvan+cledb “at” gmail.com

Main aim:

Invert coronal vector magnetic field products from observations of polarized light.
The algorithm takes arrays of one or two sets of spectro-polarimetric Stokes IQUV observations to derive line of sight and/or full vector magnetic field products.

Applications:

Inverting magnetic field information from spectro-polarimetric solar coronal observations from instruments like DKIST Cryo-NIRSP; DL-NIRSP; MLSO COMP/UCOMP.

Documentation

	Extensive documentation, including installation instruction, dependencies, algorithm schematics and much more is available on CLEDB.READTHEDOCS.IO [https://cledb.readthedocs.io/en/latest/] A git distribution PDF build is also provided.

	In-depth documentation for the Bash & Fortran parallel database generation module is provided in README-RUNDB.md.

	Installation and usage on RC systems is described in README-SLURM.md.

	This is a beta-level release. Not all functionality is implemented. TODO.md documents updates, current issues, and functions to be implemented in the near future.

System platform compatibility

	Debian+derivatives Linux x64 – all inversion modules are fully working.

	RC system CentOS linux x64 – all inversion modules are fully working. Additional binary executable is provided. May require local compiling.

	OSX (Darwin x64) Catalina and Big Sur – all inversion modules are fully working; One additional homebrew package required. See README-CODEDOC.pdf.

	Windows platform – not tested.

Examples

Install the CLEDB distribution, generate databases, and update the database save location in the ctrlparams.py class, as described in the README-CODEDOC.
Afterwards, both 1-line and 2-line implementations of CLEDB can be tested with synthetic data using the two provided Jupyter notebook examples

	test_1line.ipynb

	test_2line_IQUV.ipynb

The test data are hosted separately. These are called by enabling the corresponding 1.a-1.e cells in the test notebooks and scripts. See the documentation [https://cledb.readthedocs.io/en/latest/install.html#example-test-data] for extended details regarding the included datafiles.

	1.a synthetic CLE 3 dipole data [https://drive.google.com/file/d/1beyDfZbm6epMne92bqlKXcgPjYI2oGRR/view?usp=sharing].

	1.b synthetic CLE current-sheet data will be available soon.

	1.c Only for internal testing.

	1.d CoMP observation data [https://drive.google.com/file/d/1AdAqIvsiXEV6RK5UiGWcu-1bovs0oOGr/view?usp=sharing].

	1.e CoMP doppler analysis results for the 1.d datacube [https://drive.google.com/file/d/1-hPiRRYRS6de_0zWz1k2UU1rIKOEbPOu/view?usp=sharing].

For terminal only compute systems the test data can be downloaded via the shell interface with the following method:

i. Load the following gdrive wrapper script into your bash window directly, or introduce it in your .bash_alias setup.

function gdrive_download () { CONFIRM=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate "https://docs.google.com/uc?export=download&id=$1" -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p'); wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$CONFIRM&id=$1" -O $2; rm -rf /tmp/cookies.txt; }

ii. Download the file using its gdrive FILE_ID from the download link (1.a test data FILE_ID = 1beyDfZbm6epMne92bqlKXcgPjYI2oGRR):

gdrive_download FILE_ID local_path/local_name (sometimes needs to be run two times to set cookies correctly!)

Note: The script versions of all tests test_1line.py and test_2line.py together with the test_cledb_slurm.sh are slurm enabled to be used for headless RC system runs.
These offer the same functionality as the notebooks (from which they are directly generated from). See the dedicated README-SLURM for additional information.

Both test examples are expected to fully execute with parallel job spawning via Numba/JIT [https://numba.readthedocs.io/en/stable/] in a correct installation.

Works that fundament and support the CLEDB inversion

	Paraschiv & Judge, SolPhys, 2022 [https://ui.adsabs.harvard.edu/abs/2022SoPh..297...63P/abstract] covered the scientific justification of the algorithm, and the setup of the CLEDB inversion.

	Judge, Casini, & Paraschiv, ApJ, 2021 [https://ui.adsabs.harvard.edu/abs/2021ApJ...912...18J/abstract] discussed the importance of scattering geometry when solving for coronal magnetic fields.

	Ali, Paraschiv, Reardon, & Judge, ApJ, 2022 [https://ui.adsabs.harvard.edu/abs/2022ApJ...932...22A/abstract] performed a spectroscopic exploration of the infrared regions of emission lines available for inversion with CLEDB.

	Dima & Schad, ApJ, 2020 [https://ui.adsabs.harvard.edu/abs/2020ApJ...889..109D/abstract] discussed potential degeneracies in using certain line combinations. The one-line CLEDB inversion utilizes the methods and results described in this work.

	Schiffmann, Brage, Judge, Paraschiv & Wang, ApJ, 2021 [https://ui.adsabs.harvard.edu/abs/2021ApJ...923..186S/abstract] performed large-scale Lande g factor calculations for ions of interest and discusses degeneracies in context of their results.

	Casini & Judge, ApJ, 1999 [https://ui.adsabs.harvard.edu/abs/1999ApJ...522..524C/abstract] and Judge & Casini, ASP proc., 2001 [https://ui.adsabs.harvard.edu/abs/2001ASPC..236..503J/abstract] described the theoretical line formation process implemented in CLE, the coronal forward-synthesis code that is currently utilized by CLEDB.

README-RUNDB

CLEDB Parallel Database Generator

[image: github] [https://github.com/arparaschiv/solar-coronal-inversion]

README for running CLE database calculations on multiple CPU threads.

Contact: Alin Paraschiv (arparaschiv at ucar edu)

History for BUILD module:

	ARP: 20210617 - initial release.

	ARP: 20210827 - Added a Slurm enabled version of the script for batch jobs on RC systems.

	ARP: 20210915 - Rewrote the thread scaling to allocate tasks uniformly across threads; Both interactive and batch scripts now can utilize RC Slurm capabilities. The interactive version can only use Slurm allocated resources inside interactive jobs. The batch dedicated version can utilize scratch directories; It copies final outputs in a user’s project directory after finalizing tasks.

	ARP: 20221222 - Updated both scripts to fix an error with calculating the optimal heights that are scaled across available nodes.

SCOPE:

This is a simple bash script implementation that launches separate parallel processes for building Stokes IQUV databases as part of the CLEDB_BUILD module.
Two versions are provisioned:

	rundb_1line.sh (For local interactive runs; can be utilized inside slurm interactive environments too.)

	rundb_1line_slurm.sh (For batch and/or headless runs.)

INSTALL and USAGE:

	make sure the scripts are executable:

 chmod u+x rundb_1line.sh
 chmod u+x rundb_1line_slurm.sh

	(Only on OSX) Install gnu-sed (See notes below):

 brew install gnu-sed

	(Optional if needed) OSX might have issues with running executables (“cannot execute binary file”).
To fix try:

 xattr -d com.apple.quarantine /path/to/file

	(Optional) for interactive jobs on RC systems, the correct modules may need to be preloaded in order for scripts to execute.

 module load slurm/blanca
 module load gcc/10.2.0 (gcc is preloaded automatically in the batch version of the script.)

	run interactive jobs with (after starting the interactive node; see README_SLURM):

 ./rundb_1line.sh

	run batch/headless jobs with:

 sbatch rundb_1line_slurm.sh

NOTES:

	The interactive rundb_1line.sh script requires two manual keyboard user inputs.

i. select how many CPU threads to use;

 Hi
 You have xx CPU threads available.
 How many to use?

ii. which ion/line to compute. Each ion/line will create its own subfolder in the directory structure to store computations.

 Please indicate the line to generate. Options are:
 1: FE XIII 1074.7nm
 2: FE XIII 1079.8nm
 3: Si X 1430.1nm
 4: Si IX 3934.3nm

	The batch rundb_1line_slurm.sh script has no keyboard inputs, but has manually defined variables that control the ions to generate and system paths.

	Most directory and file pointers are dynamically linked to the CLEDB distribution directory. Local runs should run without interference. Some directory/system containing variables are defined to be compatible with the CURC system (scratch, project, etc. dirs). These may need to be updated for different systems.

	** NEWLY COMPLETED RUNS WILL DELETE/OVERWRITE PREVIOUSLY COMPUTED CALCULATIONS AND LOGS IN THE CORRESPONDENT SUBFOLDER**

	The scripts are configured to produce one line database outputs. All atomic data for the four ions of interest along with the configuration files are available in the config directory. This setup selects the relevant inputs automatically.

	Outside of the two batch scripts, the only user editable file is the config/DB.INPUT that configures the database number of calculations (parameter resolution).

	Database output, header, and logs will be written in the correspondent ion sub-directory. Intermediary folders and files will be deleted upon completion. The logs are dynamically written and calculation status can be checked anytime with tail; e.g.

 tail BASHJOB_0.LOG

	The ./rundb scripts will wait for all thread tasks to finish before exiting.
Due to limitation in CPU process ID (PID) tracking, the user is not notified in order of threads finalizing, but in the order they were scheduled. e.g. if thread 2 finishes before thread 0, the user will find out only after thread 0 and thread 1 finish. A bug might manifest if a new unrelated task is scheduled with the same PID as one of the runs, but this should not occur in normal circumstances. If such a case occurs, a tail of the logs will verify that everything went well and scripts can be exited manually.

	The number of Y-heights to calculate between the ymin and ymax ranges are not always a multiple of the number of CPU threads.
The scripts will efficiently scale the tasks on the available threads. If you request less tasks (via DB.INPUT) than threads (via keyboard or sbatch), the script will not utilize all pre-allocated resources.

	The script heavily relies on the SED function.
SED has different implementations on Linux (GNU) vs mac (BSD) which makes commands not be directly correspondent. A function wrapper SEDI that disentangles GNU vs BSD syntax is provided in the scripts. OSX users need to install a gnu implementation of sed (gnu-sed) for the script to be portable between systems (via the gsed command).

 brew install gnu-sed

	The script cuts and appends midline on the DB.INPUT file, to set the ymin and ymax ranges for each CPU thread.
The number of decimals for all variables and 3 spaces in between them need to be kept in the configuration file in order to not introduce bugs.

	Executables (dbxxx) need to be build (from CLE) on the current architecture: ELF(linux) or Mach-O(OSX)
If non-correct executables are called a “cannot execute binary file” error is produced. Architecture can be checked with the file command. The configuration deduces the OS in use and selects and uses the proper dbxxx executable in each case, where both Darwin and LINUX executables exist. The linux executable has a CURC cross compiled executable compiled with gcc/10.2.0 for use in RC systems.

README-SLURM

CLEDB Research Computing Runs

[image: github] [https://github.com/arparaschiv/solar-coronal-inversion]

Contact: arparaschiv “at” ucar.edu; paraschiv.alinrazvan+cledb “at” gmail.com

SLURM ENABLED RESEARCH COMPUTING INTERACTIVE OR HEADLESS RUNS

Detailed instructions for setting up and running the CLEDB inversion distribution on research computing (RC) systems.

1. Slurm enabled test scripts

	test_cledb_slurm.sh

	test_1line.py

	test_2line.py

Note: the test_1line.py and test_2line.py scripts are plain script versions of the test notebooks.
These are directly exported from the Jupyter .ipynb notebooks. All changes to the notebooks should be exported to the scripts.

2. Installation and run instructions for RC systems

These instructions are following the CURC system guidelines [https://curc.readthedocs.io/en/latest/index.html] and scripts are provisioned to be compatible with the blanca-nso compute nodes.

	Activate the slurm/blanca module with:

 module load slurm/blanca

2.a Interactive runs

	Start an interactive job:

 sinteractive --partition=blanca-nso --time=01:00:00 --ntasks=2 --nodes=1 --m=12gb

	Install CLEBD via git clone in the /projects/$USER/ directory following the instructions in README-codedoc.PDF.

	Create or update a .condarc file with the following contents so that anaconda environments and packages install to your /projects/\(USER/ directory instead of /home/\)USER/ directory due to lack of storage space.

 pkgs_dirs:
 - /projects/$USER/.conda_pkgs
 envs_dirs:
 - /projects/$USER/software/anaconda/envs

	Anaconda install/enable. This step needs to be run at each sinteractive login to enable Anaconda.

 source /curc/sw/anaconda3/latest

	Install the CLEDBenv anaconda environment using the CLEDBenv.yml file. Detailed instructions in README-codedoc.PDF.
Note: Install inside the sinteractive run or a compile node following the CURC guidelines. Don’t perform the installation from the login node.

 List of changes and TODO tasks

List of changes and TODO tasks

Warning

The changelog is dinamically linked to the standalone markdown files. A documentation rebuild will capture changes in any of these files.

CLEDB UPDATES and TODO list

[image: github] [https://github.com/arparaschiv/solar-coronal-inversion]

Github update history

	Commit Tag

	Date

	Description

	initial

	20210802

	Self explanatory.

	update-slurm

	20210828

	- Implemented initial slurm-enabled and batch versions for both jupyter and database build scripts. - Updated and extended documentation.

 Glossary

Glossary

	Azimuth
	Usually reffering to angles traversing the plane of the sky. These are \(\vartheta\) or \(\Phi_B\) depending on geometrical references.

	ADU
	Arbitrary Data Units; detector calibrated counts when no absolute intensity calibration exists.

	Analytical solutions
	Frame an inverse problem in a well-understood and reasonably posed mathematical form and approximates a solution.

	CDF
	Cumulative Distribution Function. Statistical method for interpreting normal distributions.

	CLE
	Coronal Line Emission FORTRAN spectral synthesis code. It is hosted on Github [https://github.com/arparaschiv/coronal-line-emission].

	CLEDB
	Coronal Line Emission DataBase Inversion PYTHON algorithm that matches spectropolarimetric observations with CLE generated databases.

	CHIANTI
	atomic database for spectroscopic diagnostics of astrophysical plasmas. See the documentation [https://www.chiantidatabase.org/].

	\(\chi^2\) fitting solution
	Statistical hypothesis to determine whether a variable is likely to come from a specified distribution. The \(\chi^2\) residual is used to find the closest match to a discrete distribution point.

	Degeneracy
	When performing an inversion, the degrees of freedom of the problem might not allow to recover an exact mathematical solution. Sets of equivalent solutions inside an inversion metric are called degenerate. e.g., disentangling an angle value knowing that sin a = \(\frac{1}{2}\), a is degenerate to either \(\frac{\pi}{6}\) or \(\frac{5\pi}{6}\).

	FWHM
	Full Width at Half Maximum. Measurement of a standard width of a normal distribution.

	Glob
	This is a Python library [https://docs.python.org/3/library/glob.html] to process and manipulate os pathnames.

	Header
	Sets of input metadata that accompanies an observation datafile.

	Inversion
	Mathematical process that starts from the output of a physical process and backtraces to recover one or more input variables. In our particular case, we start from output Stokes IQUV profiles and attempt at recovering coronal magnetic fields responsible for producing said profiles.

	JIT
	Just In Time [https://numba.readthedocs.io/en/stable/reference/jit-compilation.html] compilation decorator from the Numba library package.

	LOS
	Line Of Sight. In CLE references this direction is along the x-axis. The CLE \(\varphi\) angle traverses this direction. In the observer geometry, the \(\Theta_B\) angle traverses this direction.

	Normal distribution
	A Gaussian function, or a bell curve. Probability distribution that is symmetric around a mean value, in which data near the mean are more frequent in occurrence than data far from the mean.

	Numba
	An open source JIT compiler [https://numba.pydata.org/] that translates a subset of Python and NumPy code into fast machine code. Serial task parallelization and loop-lifting is also available. See documentation [https://numba.readthedocs.io/en/stable/index.html].

	Numpy
	Open source library [https://numpy.org/] for fast numeric operations.

	Physical parameters
	A set of observable parameters like density, magnetic field strength, magnetic geometry components, temperature, 3D coordinate position, etc.

	Physical units
	Definition of measurement that is calibrated to physically etalonated constants; e.g. intensity in [erg cm\(^{-2}\) s\(^{-1}\) nm\(^{-1}\) sr\(^{-1}\)]

	Pixel
	A 2D representation for a signal integrating area. This is equivalent to a LOS integration of a voxel. This is also the fundamental storage datatype for Python/Numpy arrays. In this document we refer to pixels when discussing data/array elements.

	POS
	Plane Of Sky. In CLE references this direction is correspondent to the zy-plane. The CLE \(\vartheta\) angle traverses this direction. In the observer geometry, the \(\Phi_B\) angle traverses this direction.

	Radiative transfer
	Transfer of electromagnetic radiation through a medium.

	RMS
	Root Mean Square. The square root of the arithmetic mean of the squares in a set of discrete realizations.

	Slurm
	A computation worload manager [https://slurm.schedmd.com/documentation.html] used predominantly by research computing clusters.

	Spectroscopic data
	Electromagnetic radiation flux spread in individual bins inside an electromagnetic spectral range.

	Spectroscopic emission line
	Excess flux exceeding background counts at determined spectral positions, occurring when the electrons of an excited atom or molecule move between energy levels.

	Stokes IQUV
	A set of values or spectra that describe the polarization state of electromagnetic radiation.

	Stokes I
	Total intensity of spectroscopic line emission.

	Stokes Q and U
	Linear polarization components of spectroscopic line emission.

	Stokes V
	Circular polarization component of spectroscopic line emission.

	Voxel
	A generalized concept of a pixel. In our case, by voxel we envision 2D projection of a volume inside a square area that contains information about the integral emission along the line of sight. Voxel is used in this document instead of pixel when refering to the physical counts recorded inside a spatial integration area of the size of a pixel.

 Index

Index

 Symbols
 | A
 | C
 | D
 | F
 | G
 | H
 | I
 | J
 | L
 | N
 | P
 | R
 | S
 | V

Symbols

 	
 	\chi^2 fitting solution

A

 	
 	ADU

 	
 	Analytical solutions

 	Azimuth

C

 	
 	CDF

 	CHIANTI

 	
 	CLE

 	CLEDB

D

 	
 	Degeneracy

F

 	
 	FWHM

G

 	
 	Glob

H

 	
 	Header

I

 	
 	Inversion

J

 	
 	JIT

L

 	
 	LOS

N

 	
 	Normal distribution

 	
 	Numba

 	Numpy

P

 	
 	Physical parameters

 	Physical units

 	
 	Pixel

 	POS

R

 	
 	Radiative transfer

 	
 	RMS

S

 	
 	Slurm

 	Spectroscopic data

 	Spectroscopic emission line

 	
 	Stokes I

 	Stokes IQUV

 	Stokes Q and U

 	Stokes V

V

 	
 	Voxel

_images/1_CLEDB_OVERVIEW.png
CORONAL FIELD DATABASE INVERSION - SIMPLIFIED MODULE SCHEME

(a]

402 "
= - Manually

g < ml Z CLEDB_BUILD CLE Database preconfigured,;
< 5 m s (Generates synthetic databases of coronal emission lines for a combination of LOS Does not need to
';: = a § positions, densities and magnetic orientation angles, at multiple coronal heights) Disk Stored Data be generated for
&) L(l.')J - each run.

o

INPUT: CLEDB_PREPINV preprocessing

OBSERVED = (Prepares the observed stokes profiles and the CLEDB synthetic profiles for

% - 5 STOKES IQUV & % analysis. Rgduces dimensionaly of data, cal_culates necesary intermediatg products,
<5 = HEADER *keys & and applies corrections for further analysis based on the input. Determines the
m <o & database configuration and calculates the minimal set of databases to be used,
<E W i ng i i
E < . preloading everything in memory to avoid I/O bottlenecks.)
<o Controling
O < | parameters
o3 o m

o
X
£ 0 (Constants

NLINE == NLINE ==

SPECTRO_PROC SPECTRO_PROC

(Two line spectroscopic analysis. Retrieves local plasma

z (One line Spectroscopic analysis. Retrieves local plasma z
% properties e.g. thermal and non-thermal widths, doppler % properties e.g. thermal and non-thermal widths, doppler
£ shifts, peak intensities and background counts, i~ shifts, peak intensities and background counts,
& polarization degree, derived via the spectroscopic o polarization degree derived via the spectroscopic
g 8 properties of the selected line.) properties of both selected lines.)
bl 4
2
< o
|
<2
< | BLOS PROC CLEDB_INVPROC inversion scheme
<= % (Analytical BLos & azimuth estimation. Retrieves LOS e :
() : - - o (Performs a fitting between the observation and the
(m) T ambiguated information on the BLOS magnetic field . ; g .
= A . . CLEDB calculations using a chi? fitting algorithm. The
z strength and the local magnetic azimuth using analytic

matched database entry accesses information on the
LOS position of the dominating emitting structure, along
with the full vector magnetic field information and plasma
density. Solutions have ambiguities that are not directly

approximations.)

PYTHON

resolvable.)

Field strength |B|
Magnetic azimuth angle ®

Line core Intensity and background counts
Doppler shift (velocity units)
Line Broadening (Total & non-thermal)
Degree of linear and total polarization P; & Py

Line of sight magnetic field; B, os = |B| cos(®)

Magnetic azimuth angle @ Position x along the line of sight

Line of sight angle @ at position x
Local plasma density p

OUTPUTS

_images/4_CLEDB_PROC.png
DATA ANALYSIS DIAGRAM (CLEDB_PROC)

INPUT:

PU
header keys | cLeps_prepinv | |

(Controling parameters

database
dbhdr
db_enc

sobs_tot
yobs
ms

SPECTRO_PROC

[sobs_in, sobs_tot, rms, background, keyvals,consts,params]

LEV2CALIB_WAVE

(Optional; implementation TBD) ;
LEV2CALIB_ABSINT

(Optional; implementation TBD)

CDF_STATISTICS core wavelength
[sobs_in/sobs_cal[xx,yy], shift wavelength
sobs_tot/sobs_totrot[xx,yy], shift velocity
backgroomaa i keyvals, line core counts (4)
consts, nl, verbose] background counts|
width (total)
width (non-therm)
linear polarization
total polarization

specout

BLOS_PROC

[sobs_tot, rms, consts, params]

CLEDB_INVPROC

[sobs_totrot, database, db_enc, yobs, aobs, dbdir, rms, dbhdr, keyvals, params]

CLEDB_MATCH

[sobs_totrot[xx,yy],yobs[xx,yy],aobs[xx,yy],database[db_enc], dbhdr, rms, maxchisq, nsearch, bcalc, reduced, verbose]

reduction ==

reduction==1

CLEDB_GETSUBSET
[sobs_totrot[xx,yy], dbhdr, database[db_enc], nsearch, verbose]

Full database

database

Create a chi2 CLEDB_PARTSORT
metric betwen [chisqg, nsearch]

database & sobs

iX
(index of current solution)

CLEDB_PHYS

[databasefix] [ix, yobs, dbhdr, bfield]

CLEDB_QUDEROTATE
[databaselix], aobs]

[update issuemask]

sfound

OUTPUTS

Reduced size database

(¢
chisq[ix]
ay
gx
edens
bfield
phi
theta
Bx
By
B,

invout

FOR
nsearch
requested
solutions
WHILE
chisq[ix] <
maxchisq

_images/STOKES_out.png
Z[Rol

Normalized Stokes |

1.00

0.75

0.50

0.25

0.00

—0.25

—-0.50

—-0.75

-1.00

1.0

0.8

0.6

0.4

0.2

T T 0.0
1.00 1.25 1.50

Y[Ro]

Normalized Stokes V

1.00

0.75

0.50

0.25

0.00

—0.25

—-0.50

—-0.75

-1.00

1.00 1.25 1.50

0.0100

0.0075

0.0050

0.0025

0.0000

—0.0025

—0.0050

—0.0075

—0.0100

Normalized Stokes Q

1.00

0.75

0.50

0.25

0.00

—0.25

—-0.50

—-0.75

-1.00

0.04

0.02

0.00

—0.02

—0.04

1.00 1.25 1.50

Normalized Stokes U

1.00

0.75

0.50

0.25

0.00

—0.25

—-0.50

—-0.75

-1.00

0.04

0.02

0.00

—0.02

—0.04

1.00 1.25 1.50

_images/2_CLEDB_BUILD.png
DATABASE GENERATION DIAGRAM (CLEDB_BUILD)

CLEDB_BUILD

Jrundb_1line.sh RUNDB 1LINE
Darwin or Linux Update NY, YMIN, YMAX [IoeruN| |

architecture

dependent
reprocessing update NY, YMiN, ymaX —={ [oRUN] | Stored Data configure

and run
FOR each

ncore Split NY tasks
(CPU cores to use into available Update NY, YMIN, YMAX l DBRUN ' Stored Data requested

out of total threads CPU threads ion
ncore independent threads

Select ion/line
FE XIIl 1074.7nm

FE XIll 1079.8nm update NY, YMiN, ymaX —={ [oRUN] | Stored Data

: SiX 1430.1nm
: SilX 3934.3nm

DB.INPUT
Line 3: Line 5:
ELNMIN
ATOM.fel3 INPUT si10 ELNMAX

ATOM.sil0 . YMIN
INPUT.si09 YMAX

ATOM si9
ATOM.mg8 INPUT.mg08 NBTHETA| | XMIN
XMAX Multi-line

BPMIN
BPMAX CLE Database
GRID.DAT |
IONEQ
=

Disk Stored Data

_images/3_CLEDB_PREP.png
DATA PRE-PROCESSING DIAGRAM (CLEDB_PREPINV)

INPUT:
sobs_in
header *keys

Constants] |Controling parameters

CLEDB_PREPINV

SOBS_PREPROCESS
I | [sobs_in, params]

header *keys unpack
create issuemask

OBS_CALCHEIGHT

Normalize sobs_tot
OBS_INTEGRATE 1o Stokes |]

NLINE == NLINE ==

OBS_QUROTATE

sobs_totrot
aobs

sobs_totrot
sobs_tot aobs

yobs yobs
rms rms
background background
keyvals keyvals

[update issuemask]

(Texene eurs]

BLOS_PROC : SPECTRO_PROC
- Analytical BLOS & azimuth estimation r< one or two line Spectroscopic analysis

CLE Database

Disk Stored Data

SDB_PREPROCESS
[yobs, keyvals, params]

dbnames
dbynumbers
dbsubdirs

SDB_FILEINGEST

[dbdir,nline,tline]

dbsubdirs

SDB_PARSEHEADER
[dbdir, dbsubdirs]

SDB_READ (1 or 2 subdirs)
[dbnames, dbhdr, db_uniq]
database
(normalized set for all yobs)

database
dbhdr
db_enc

[update issuemask]

SDB_FINDELONGATION
[yobs, dbynumbers]

db_enc
db_uniq

SDB_PARSEHEADER
[dbdir]

SDB_READ (dbdir)
[dbnames, dbhdr, db_uniq]

CLEDB_INVPROC
two line inversion scheme

_images/comp_iqu.png
Fe XIIl 1074.62 Stokes | Fe XIIl 1074.62 Stokes Q Fe XIIl 1074.62 Stokes U Fe XIIl 1074.62 Stokes V

-1.0 -05 00 05 1.0
X [Rol

Fe XIIl 1079.78 Stokes | Fe XIIl 1079.78 Stokes Q Fe XIIl 1079.78 Stokes U Fe XIIl 1079.78 Stokes V

nav.xhtml

 Table of Contents

 		
 Documentation for the CLEDB Distribution

 		
 Synopsis and Motivation

 		
 Synopsis

 		
 Motivation for the CLEDB approach

 		
 List of Relevant Publications

 		
 Module Overview

 		
 Algorithm Flowchart Definitions

 		
 The CLEDB Modules

 		
 The Python Modules

 		
 Installation and Run Instructions

 		
 Code Distribution Download

 		
 A CLEDBenv Python Environment

 		
 Basic Run Example

 		
 Headless Slurm Runs Overview

 		
 Example Test Data

 		
 Input Variables and Parameters

 		
 Input Data and Metadata

 		
 Ctrl. Parameters ctrlparams.py Class

 		
 General Parameters

 		
 PREPINV Parameters

 		
 PROC Parameters

 		
 Numba Jit Parameters

 		
 Constants constants.py Class

 		
 Physical Constants

 		
 Ion Specific Constants

 		
 CLEDB_BUILD - Database Generation

 		
 CLEDB_BUILD Configuration

 		
 DB.INPUT Parameters

 		
 The CLEDB_BUILD Job Script

 		
 CLEDB_BUILD Output

 		
 CLEDB_PREPINV - Pre-processing

 		
 CLEDB_PREPINV Module Functions

